题目传送门

题意:一个蚂蚁一直往左边走,问最多能走多少步,且输出路径

分析:就是凸包的变形题,凸包性质,所有点都能走。从左下角开始走,不停排序。有点纠结,自己的凸包不能AC。待理解透凸包再来写。。 好像只能用卷包裹法来写,就是从一个起点出发,每次相对于起点用叉积排序,选择最外侧的点,更新起点。

/************************************************
* Author :Running_Time
* Created Time :2015/10/27 星期二 14:20:36
* File Name :POJ_1696.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const double EPS = 1e-10;
const double PI = acos (-1.0);
int dcmp(double x) { //三态函数,减少精度问题
if (fabs (x) < EPS) return 0;
else return x < 0 ? -1 : 1;
}
struct Point { //点的定义
double x, y;
int id;
Point (double x=0, double y=0, int id = 0) : x (x), y (y), id (id) {}
Point operator + (const Point &r) const { //向量加法
return Point (x + r.x, y + r.y);
}
Point operator - (const Point &r) const { //向量减法
return Point (x - r.x, y - r.y);
}
Point operator * (double p) { //向量乘以标量
return Point (x * p, y * p);
}
Point operator / (double p) { //向量除以标量
return Point (x / p, y / p);
}
bool operator < (const Point &r) const { //点的坐标排序
return x < r.x || (x == r.x && y < r.y);
}
bool operator == (const Point &r) const { //判断同一个点
return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
}
};
typedef Point Vector; //向量的定义
Point read_point(void) { //点的读入
int id;
double x, y;
scanf ("%d%lf%lf", &id, &x, &y);
return Point (x, y, id);
}
double dot(Vector A, Vector B) { //向量点积
return A.x * B.x + A.y * B.y;
}
double cross(Vector A, Vector B) { //向量叉积
return A.x * B.y - A.y * B.x;
}
double polar_angle(Vector A) { //向量极角
return atan2 (A.y, A.x);
}
double length(Vector A) { //向量长度,点积
return sqrt (dot (A, A));
}
double angle(Vector A, Vector B) { //向量转角,逆时针,点积
return acos (dot (A, B) / length (A) / length (B));
}
Vector rotate(Vector A, double rad) { //向量旋转,逆时针
return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
}
Vector nomal(Vector A) { //向量的单位法向量
double len = length (A);
return Vector (-A.y / len, A.x / len);
}
Point line_line_inter(Point p, Vector V, Point q, Vector W) { //两直线交点,参数方程
Vector U = p - q;
double t = cross (W, U) / cross (V, W);
return p + V * t;
}
double point_to_line(Point p, Point a, Point b) { //点到直线的距离,两点式
Vector V1 = b - a, V2 = p - a;
return fabs (cross (V1, V2)) / length (V1);
}
double point_to_seg(Point p, Point a, Point b) { //点到线段的距离,两点式
if (a == b) return length (p - a);
Vector V1 = b - a, V2 = p - a, V3 = p - b;
if (dcmp (dot (V1, V2)) < 0) return length (V2);
else if (dcmp (dot (V1, V3)) > 0) return length (V3);
else return fabs (cross (V1, V2)) / length (V1);
}
Point point_line_proj(Point p, Point a, Point b) { //点在直线上的投影,两点式
Vector V = b - a;
return a + V * (dot (V, p - a) / dot (V, V));
}
bool can_inter(Point a1, Point a2, Point b1, Point b2) { //判断线段相交,两点式
double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
}
bool on_seg(Point p, Point a1, Point a2) { //判断点在线段上,两点式
return dcmp (cross (a1 - p, a2 - p)) == 0 && dcmp (dot (a1 - p, a2 - p)) < 0;
}
double area_triangle(Point a, Point b, Point c) { //三角形面积,叉积
return fabs (cross (b - a, c - a)) / 2.0;
}
double area_poly(Point *p, int n) { //多边形面积,叉积
double ret = 0;
for (int i=1; i<n-1; ++i) {
ret += fabs (cross (p[i] - p[0], p[i+1] - p[0]));
}
return ret / 2;
}
int pos;
bool vis[55];
Point p[55];
bool cmp(Point a, Point b) {
double t = cross (a - p[pos], b - p[pos]);
if (dcmp (t) == 0) {
return length (a - p[pos]) < length (b - p[pos]);
}
else if (dcmp (t) < 0) return false;
else return true;
} /*
点集凸包
*/
vector<int> convex_hull(vector<Point> P) {
sort (P.begin (), P.end ());
int n = P.size (), k = 0;
vector<Point> ret (n * 2);
vector<int> id (n * 2);
for (int i=0; i<n; ++i) {
while (k > 1 && cross (ret[k-1] - ret[k-2], P[i] - ret[k-1]) <= 0) k--;
id[k] = P[i].id;
ret[k++] = P[i];
}
for (int i=n-2, t=k; i>=0; --i) {
while (k > t && cross (ret[k-1] - ret[k-2], P[i] - ret[k-1]) <= 0) k--;
id[k] = P[i].id;
ret[k++] = P[i];
}
ret.resize (k-1); id.resize (k - 1);
return id;
} int main(void) {
int T; scanf ("%d", &T);
while (T--) {
int n; scanf ("%d", &n);
for (int i=0; i<n; ++i) {
p[i] = read_point ();
if (p[0].y > p[i].y || (p[0].y == p[i].y && p[0].x > p[i].x)) swap (p[0], p[i]);
}
pos = 0;
for (int i=1; i<n; ++i) {
sort (p+i, p+n, cmp);
pos++;
}
printf ("%d", n);
for (int i=0; i<n; ++i) {
printf (" %d", p[i].id);
}
puts ("");
} //cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n"; return 0;
}

  

简单几何(凸包) POJ 1696 Space Ant的更多相关文章

  1. poj 1696 Space Ant (极角排序)

    链接:http://poj.org/problem?id=1696 Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  2. 2018.07.04 POJ 1696 Space Ant(凸包卷包裹)

    Space Ant Time Limit: 1000MS Memory Limit: 10000K Description The most exciting space discovery occu ...

  3. poj 1696:Space Ant(计算几何,凸包变种,极角排序)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2876   Accepted: 1839 Descrip ...

  4. POJ 1696 Space Ant 卷包裹法

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3316   Accepted: 2118 Descrip ...

  5. POJ 1696 Space Ant(极角排序)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2489   Accepted: 1567 Descrip ...

  6. poj 1696 Space Ant(模拟+叉积)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3840   Accepted: 2397 Descrip ...

  7. POJ 1696 Space Ant(点积的应用)

    Space Ant 大意:有一仅仅蚂蚁,每次都仅仅向当前方向的左边走,问蚂蚁走遍全部的点的顺序输出.開始的点是纵坐标最小的那个点,開始的方向是開始点的x轴正方向. 思路:从開始点開始,每次找剩下的点中 ...

  8. POJ 1696 - Space Ant 凸包的变形

    Technorati Tags: POJ,计算几何,凸包 初学计算几何,引入polygon后的第一个挑战--凸包 此题可用凸包算法做,只要把压入凸包的点从原集合中排除即可,最终形成图形为螺旋线. 关于 ...

  9. POJ 1696 Space Ant(凸包变形)

    Description The most exciting space discovery occurred at the end of the 20th century. In 1999, scie ...

随机推荐

  1. Linux 中的 wheel 组和 staff 组

    wheel 组的概念 wheel 组的概念继承自 UNIX.当服务器需要进行一些日常系统管理员无法执行的高级维护时,往往就要用到 root 权限:而“wheel” 组就是一个包含这些特殊权限的用户池: ...

  2. spring所需包下载

    1.进入http://repo.spring.io/webapp/search/artifact/选择artifacts,在搜过栏输入spring-framework,点击查询出来的表头artifac ...

  3. [Effective JavaScript 笔记] 第13条:使用立即调用的函数表达式创建局部作用域

    function wrapElements(a){ var res=[],i,n; for(i=0,n=a.length;i<n;i++){ res[i]=function(){return a ...

  4. 坚持不懈之linux haproxy的配置文件关键字查询手册

    1.关键词balance balance用于定义负载均衡的算法,可用于defaults.listen和backend中. balance使用方法如下: balance <algorithm> ...

  5. TortoiseSVN中图标的含义

    今天在使用svn时发现有好多不认识了,所以查了下svn帮助手册.借此总结了下 svn 中图标的含义 一个新检出的工作复本使用绿色的勾做重载.表示Subversion状态 正常. 在开始编辑一个文件后, ...

  6. JavaScript String 对象方法

    String 对象方法 方法 描述 anchor() 创建 HTML 锚. big() 用大号字体显示字符串. blink() 显示闪动字符串. bold() 使用粗体显示字符串. charAt() ...

  7. maven web项目build失败

    通过maven build发布web项目到tomcat时报如下异常: [INFO] ---------------------------------------------------------- ...

  8. VS添加lib库

    #pragma comment(lib,"opengl32.lib")

  9. struts标签--logic总结

    1. logic:empty 该标签是用来判断是否为空的.如果为空,该标签体中嵌入的内容就会被处理.该标签用于以下情况: 1)当Java对象为null时: 2)当String对象为"&quo ...

  10. 爱改名的小融 2(codevs 3149)

    3149 爱改名的小融 2  时间限制: 2 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description Wikioi上有个人 ...