主要为第十周内容:大规模机器学习、案例、总结

(一)随机梯度下降法

如果有一个大规模的训练集,普通的批量梯度下降法需要计算整个训练集的误差的平方和,如果学习方法需要迭代20次,这已经是非常大的计算代价。

首先,需要确定大规模的训练集是否有必要。当我们确实需要一个大规模的训练集,可以尝试用随机梯度下降法来替代批量梯度下降法。

在随机梯度下降法中,定义代价函数一个单一训练实例的代价:

随机梯度下降算法如下:

随机梯度下降算法在每一次计算之后便更新参数Θ,而不需要首先将所有的训练集求和,在梯度下降算法还没有完成一次迭代时,随机梯度下降算法便已经走出了很远。但是这样的算法存在的问题是,不是每一步都是朝着"正确"的方向迈出的。因此算法虽然会逐渐走向全局最小值的位置,但是可能无法站到那个最小值的那一点,而是在最小值点附近徘徊。

微型批量梯度下降算法是介于批量梯度下降算法和随机梯度下降算法之间的算法,每计算常数b次训练实例,变更新一次Θ。

在批量梯度下降中,我们可以令代价函数 J 为迭代次数的函数,绘制图表,根据图表来判断梯度下降是否收敛。
但是,在大规模的训练集的情况下,这是不现实的,因为计算代价太大了。在随机梯度下降中,我们在每一次更新Θ之前都计算一次代价,然后每 X 次迭代后,求出这 X次对训练实例计算代价的平均值,然后绘制这些平均值与 X 次迭代的次数之间的函数图表。

当我们绘制这样的图表时,可能会得到一个颠簸不平但是不会明显减少的函数图像(如上面左下图中蓝线所示)。我们可以增加 X 来使得函数更加平缓,也许便能看出下降的趋势了(如上面左下图中红线所示);或者可能函数图表仍然是颠簸不平且不下降的(如洋红色线所示),那么我们的模型本身可能存在一些错误。如果我们得到的曲线如上面右下方所示,不断地上升,那么我们可能会需要选择一个较小的学习率 α。

也可以令学习率随着迭代次数的增加而减小,如

但是通常我们不需要这样做便能有非常好的效果了,对α进行调整所耗费的计算通常不值得。

(二)在线学习

在线学习算法指的是对数据流而非离线的静态数据集的学习。许多在线网站都有持续不断的用户流,对于每一个用户,网站希望能在不将数据存储到数据库中便顺利地进行算法学习。

一旦对该数据完成学习算法,我们便丢弃该数据,不再存储它。

在线学习算法的好处在于,我们的算法可以很好的适应用户的倾向性,算法可以针对用户的当前行为不断地更新模型以适应该用户。

Map Reduce和数据并行

批量梯度下降算法来求解大规模数据集的最优解=需要对整个训练集进行循环,计算其偏导数和代价,再求和,计算代价非常大。将整个数据集计算的工作分配到几台计算机中,让每一台计算机处理数据集的一部分,然后将计算结果汇总求和。这就是Map Reduce。

详细的Map Reduce 可以继续学习 Hadoop和Spark

(三)上限分析

在机器学习应用中,通常血药几个步骤才能进行最终的预测,哪个步骤最值得花时间和精力去改善呢?这就是上限分析的用武之地。

在一个文字识别应用中,分为以下步骤:

在上限分析中,对于该步骤和应用之前部分,手工提供100%的输出结果,看应用 最终效果提升了多少。

由上图可见,文字侦测(Character Segmentation)步骤值得投入时间和精力。

Coursera 机器学习笔记(八)的更多相关文章

  1. coursera机器学习笔记-建议,系统设计

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  2. coursera机器学习笔记-神经网络,学习篇

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  3. coursera机器学习笔记-神经网络,初识篇

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  4. coursera机器学习笔记-多元线性回归,normal equation

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  5. coursera机器学习笔记-机器学习概论,梯度下降法

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  6. Coursera 机器学习笔记(六)

    主要为第八周内容:聚类(Clustering).降维 聚类是非监督学习中的重要的一类算法.相比之前监督学习中的有标签数据,非监督学习中的是无标签数据.非监督学习的任务是对这些无标签数据根据特征找到内在 ...

  7. Coursera 机器学习笔记(七)

    主要为第九周内容:异常检测.推荐系统 (一)异常检测(DENSITY ESTIMATION) 核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非 ...

  8. Coursera 机器学习笔记(四)

    主要为第六周内容机器学习应用建议以及系统设计. 下一步做什么 当训练好一个模型,预测未知数据,发现结果不如人意,该如何提高呢? 1.获得更多的训练实例 2.尝试减少特征的数量 3.尝试获得更多的特征 ...

  9. Coursera 机器学习笔记(三)

    主要为第四周.第五周课程内容:神经网络 神经网络模型引入 之前学习的线性回归还是逻辑回归都有个相同缺点就是:特征太多会导致计算量太大.如100个变量,来构建一个非线性模型.即使只采用两两特征组合,都会 ...

随机推荐

  1. C# 类型转换is和as 以及性能陷阱

       1.在C#2.0之前,as只能用于引用类型.而在C#2.0之后,它也可以用于可空类型.其结果为可空类型的某个值---空值或者一个有意义的值.示例: static void Main(string ...

  2. Redis编码问题

    最近搞redis存储对象出了点问题,大概说一下背景,项目原有的东东以前存的是redis,存储的直接是对象模型,没有问题,这里存储对象存储任何信息事都没有问题的.但是现在调整为存储序列化的json字符串 ...

  3. STM32F0的flash读写

    flash大小64k Rom+8k Ram的大小,stm32f051有64k Rom,总的分为 64页,一页1024byte ,在flash的Rom里面写数据掉电保存,相当于W25q80 uint32 ...

  4. React的学习(下)

    摘要 众所周知,前端三大框架Angular.React.Vue,所以为了跟上时代的步伐,最近开始着手学习React,这时候就发现个大问题,框架一直在更新,提倡的编写语法也在更新,网上有许多教程都是一两 ...

  5. DirectFB、Layer、Window、Surface之间关系

    层(Layers) 表示一块儿独立的图像缓冲区.大多数的嵌入式设备都有多个层.他们由硬件使用合适的alpha值来blending,然后显示. 表面 (Surface) 用来保存像素数据的保留内存区域. ...

  6. 572. Subtree of Another Tree

    Problem statement: Given two non-empty binary trees s and t, check whether tree t has exactly the sa ...

  7. UISement属性

    .segmentedControlStyle 设置segment的显示样式. typedef NS_ENUM(NSInteger, UISegmentedControlStyle) { UISegme ...

  8. Java 7之基础 - 强引用、弱引用、软引用、虚引用

    1.强引用(StrongReference) 强引用是使用最普遍的引用.如果一个对象具有强引用,那垃圾回收器绝不会回收它.如下: Object o=new Object();   //  强引用 当内 ...

  9. linux上安装tcl

    1. 首先下载安装包,推荐下载activetcl(对tcl源码进行了预编译,安装步骤简单).打开网址http://activestate.com找到activetcl的社区版(社区版是免费的,找到li ...

  10. Maven学习-Profile详解

    Profile能让你为一个特殊的环境自定义一个特殊的构建:profile使得不同环境间构建的可移植性成为可能.Maven中的profile是一组可选的配置,可以用来设置或者覆盖配置默认值.有了prof ...