spark join操作解读
本文主要介绍spark join相关操作,Java描述。
讲述三个方法spark join,left-outer-join,right-outer-join
我们以实例来进行说明。我的实现步骤记录如下。
1、数据准备
2、HSQL描述
3、Spark描述
1、数据准备
我们准备两张Hive表,分别是orders(订单表)和drivers(司机表),通过driver_id字段进行关联。数据如下:
orders
hive (gulfstream_test)> select * from orders; OK orders.order_id orders.driver_id Time taken: row(s)
drivers
hive (gulfstream_test)> select * from drivers; OK drivers.driver_id drivers.car_id Time taken: row(s)
2、HSQL描述
JOIN
自然连接,输出连接键匹配的记录。
hive (gulfstream_test)> select * from orders t1 join drivers t2 on (t1.driver_id = t2.driver_id) ; OK t1.order_id t1.driver_id t2.driver_id t2.car_id Time taken: row(s)
LEFT OUTER JOIN
左外链接,输出连接键匹配的记录,左侧的表无论匹配与否都输出。
hive (gulfstream_test)> select * from orders t1 left outer join drivers t2 on (t1.driver_id = t2.driver_id) ;
OK
t1.order_id t1.driver_id t2.driver_id t2.car_id
NULL NULL
NULL NULL
Time taken: row(s)
RIGHT OUTER JOIN
右外连接,输出连接键匹配的记录,右侧的表无论匹配与否都输出。
hive (gulfstream_test)> select * from orders t1 right outer join drivers t2 on (t1.driver_id = t2.driver_id) ; OK t1.order_id t1.driver_id t2.driver_id t2.car_id Time taken: row(s)
3、Spark描述
Join.java
spark实现join的方式也是通过RDD的算子,spark同样提供了三个算子join,leftOuterJoin,rightOuterJoin。
在下面给出的例子中,我们通过spark-hive读取了Hive表中的数据,并将DataFrame转化成了RDD。
在join之后,通过collect()函数把数据拉到Driver端本地,并通过标准输出打印。
需要指出的是:
1)join算子(join,leftOuterJoin,rightOuterJoin)只能通过PairRDD使用;
2)join算子操作的Tuple2<Object1, Object2>类型中,Object1是连接键,我只试过Integer和String,Object2比较灵活,甚至可以是整个Row。
package com.kangaroo.studio.algorithms.join;
import com.google.common.base.Optional;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.hive.HiveContext;
import scala.Tuple2;
import java.io.Serializable;
import java.util.Iterator;
/*
* spark-submit --queue=root.zhiliangbu_prod_datamonitor spark-join-1.0-SNAPSHOT-jar-with-dependencies.jar
* */
public class Join implements Serializable {
private transient JavaSparkContext javaSparkContext;
private transient HiveContext hiveContext;
/*
* 初始化Load
* 创建sparkContext, sqlContext, hiveContext
* */
public Join() {
initSparckContext();
initHiveContext();
}
/*
* 创建sparkContext
* */
private void initSparckContext() {
String warehouseLocation = System.getProperty("user.dir");
SparkConf sparkConf = new SparkConf()
.setAppName("spark-join")
.set("spark.sql.warehouse.dir", warehouseLocation)
.setMaster("yarn-client");
javaSparkContext = new JavaSparkContext(sparkConf);
}
/*
* 创建hiveContext
* 用于读取Hive中的数据
* */
private void initHiveContext() {
hiveContext = new HiveContext(javaSparkContext);
}
public void join() {
/*
* 生成rdd1
* */
String query1 = "select * from gulfstream_test.orders";
DataFrame rows1 = hiveContext.sql(query1).select("order_id", "driver_id");
JavaPairRDD<String, String> rdd1 = rows1.toJavaRDD().mapToPair(new PairFunction<Row, String, String>() {
@Override
public Tuple2<String, String> call(Row row) throws Exception {
String orderId = (String)row.get(0);
String driverId = (String)row.get(1);
return new Tuple2<String, String>(driverId, orderId);
}
});
/*
* 生成rdd2
* */
String query2 = "select * from gulfstream_test.drivers";
DataFrame rows2 = hiveContext.sql(query2).select("driver_id", "car_id");
JavaPairRDD<String, String> rdd2 = rows2.toJavaRDD().mapToPair(new PairFunction<Row, String, String>() {
@Override
public Tuple2<String, String> call(Row row) throws Exception {
String driverId = (String)row.get(0);
String carId = (String)row.get(1);
return new Tuple2<String, String>(driverId, carId);
}
});
/*
* join
* */
System.out.println(" ****************** join *******************");
JavaPairRDD<String, Tuple2<String, String>> joinRdd = rdd1.join(rdd2);
Iterator<Tuple2<String, Tuple2<String, String>>> it1 = joinRdd.collect().iterator();
while (it1.hasNext()) {
Tuple2<String, Tuple2<String, String>> item = it1.next();
System.out.println("driver_id:" + item._1 + ", order_id:" + item._2._1 + ", car_id:" + item._2._2 );
}
/*
* leftOuterJoin
* */
System.out.println(" ****************** leftOuterJoin *******************");
JavaPairRDD<String, Tuple2<String, Optional<String>>> leftOuterJoinRdd = rdd1.leftOuterJoin(rdd2);
Iterator<Tuple2<String, Tuple2<String, Optional<String>>>> it2 = leftOuterJoinRdd.collect().iterator();
while (it2.hasNext()) {
Tuple2<String, Tuple2<String, Optional<String>>> item = it2.next();
System.out.println("driver_id:" + item._1 + ", order_id:" + item._2._1 + ", car_id:" + item._2._2 );
}
/*
* rightOuterJoin
* */
System.out.println(" ****************** rightOuterJoin *******************");
JavaPairRDD<String, Tuple2<Optional<String>, String>> rightOuterJoinRdd = rdd1.rightOuterJoin(rdd2);
Iterator<Tuple2<String, Tuple2<Optional<String>, String>>> it3 = rightOuterJoinRdd.collect().iterator();
while (it3.hasNext()) {
Tuple2<String, Tuple2<Optional<String>, String>> item = it3.next();
System.out.println("driver_id:" + item._1 + ", order_id:" + item._2._1 + ", car_id:" + item._2._2 );
}
}
public static void main(String[] args) {
Join sj = new Join();
sj.join();
}
}
pom.xml
pom依赖
这里只依赖spark-core和spark-hive两个jar。
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>
</dependencies>
打包方式
<build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<archive>
<manifest>
<!--这里要替换成jar包main方法所在类 -->
<mainClass>com.kangaroo.studio.algorithms.join.Join</mainClass>
</manifest>
</archive>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id> <!-- this is used for inheritance merges -->
<phase>package</phase> <!-- 指定在打包节点执行jar包合并操作 -->
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>
</plugins>
</build>
执行结果
其中Optional.absent()表示的就是null,可以看到和HSQL是一致的。
Application ID is application_1508228032068_2746260, trackingURL: http://10.93.21.21:4040 ****************** join ******************* driver_id:, order_id:, car_id: ****************** leftOuterJoin ******************* driver_id:, order_id:, car_id:Optional.absent() driver_id:, order_id:, car_id:Optional.absent() driver_id:, order_id:, car_id:Optional.of() ****************** rightOuterJoin ******************* driver_id:, order_id:Optional.absent(), car_id: driver_id:, order_id:Optional.of(), car_id:
spark join操作解读的更多相关文章
- 大数据计算平台Spark内核全面解读
1.Spark介绍 Spark是起源于美国加州大学伯克利分校AMPLab的大数据计算平台,在2010年开源,目前是Apache软件基金会的顶级项目.随着Spark在大数据计算领域的暂露头角,越来越多的 ...
- 大数据开发-Spark Join原理详解
数据分析中将两个数据集进行 Join 操作是很常见的场景.在 Spark 的物理计划阶段,Spark 的 Join Selection 类会根 据 Join hints 策略.Join 表的大小. J ...
- 使用MapReduce实现join操作
在关系型数据库中,要实现join操作是非常方便的,通过sql定义的join原语就可以实现.在hdfs存储的海量数据中,要实现join操作,可以通过HiveQL很方便地实现.不过HiveQL也是转化成 ...
- 使用 Linq 对多个对象进行join操作 C#
class A { public int id { get; set; } public string name { get; set; } } class B { public int id { g ...
- MapReduce 实现数据join操作
前段时间有一个业务需求,要在外网商品(TOPB2C)信息中加入 联营自营 识别的字段.但存在的一个问题是,商品信息 和 自营联营标示数据是 两份数据:商品信息较大,是存放在hbase中.他们之前唯一的 ...
- Spark RDD/Core 编程 API入门系列之动手实战和调试Spark文件操作、动手实战操作搜狗日志文件、搜狗日志文件深入实战(二)
1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/ ...
- 重温sql语句中的join操作
1.join语句 Sql join语句用来合并两个或多个表中的记录.ANSI标准SQL语句中有四种JOIN:INNER,OUTER,LEFTER,RIGHT,一个表或视图也可以可以和它自身做JOIN操 ...
- SQL点滴2—重温sql语句中的join操作
原文:SQL点滴2-重温sql语句中的join操作 1.join语句 Sql join语句用来合并两个或多个表中的记录.ANSI标准SQL语句中有四种JOIN:INNER,OUTER,LEFTER,R ...
- hive:join操作
hive的多表连接,都会转换成多个MR job,每一个MR job在hive中均称为Join阶段.按照join程序最后一个表应该尽量是大表,因为join前一阶段生成的数据会存在于Reducer 的bu ...
随机推荐
- Jenkins使用-windows机器上的文件上传到linux
一.背景 最近的一个java项目,使用maven作包管理,通过jenkins把编译打包后war部署到另一台linux server上的glassfish(Ver3.1)中,在网上搜索的时候看到有人使用 ...
- 快速学会require的使用
快速学会使用require.js 1.get start 先到官网下载requirejs到本地,官方同时提供Node版本r.js,我们只使用requirejs即可. 接下来在页面上写入 <scr ...
- node.js的generic-pool与mysql结合,mysql连接池
var generic_pool = require('generic-pool'); var pool = generic_pool.Pool({ name: 'mysql', ma ...
- GitHub使用(一) - 新建个人网站
1.首先进入“仓库Repositories”,点击“新建New”.
- 第6章 Overlapped I/O, 在你身后变戏法 ---被激发的 Event 对象 -4
以文件 handle 作为激发机制,有一个明显的限制,那就是没办法说出到底是哪一个 overlapped 操作完成了.如果每个文件 handle 只有一个操作等待决定,上述问题其实并不成为问题.但是如 ...
- 第6章 Overlapped I/O, 在你身后变戏法 ---1
这一章描述如何使用 overlapped I/O(也就是 asynchronous I/O).某些时候 overlapped I/O 可以取代多线程的功用.然而,overlapped I/O 加上co ...
- js中判断对象数据类型的方法
对js中不同数据的布尔值类型总结:false:空字符串:null:undefined:0:NaN.true:除了上面的false的情况其他都为true: 如下: var o = { 'name':'l ...
- 【转】Keberos认证原理
前几天在给人解释Windows是如何通过Kerberos进行Authentication的时候,讲了半天也别把那位老兄讲明白,还差点把自己给绕进去.后来想想原因有以下两点:对于一个没有完全不了解Ker ...
- H5页面解决IOS进入不自动播放问题(微信内)
废话少说,直接上代码. 主要还是调用微信的jdk做兼容处理.,安卓可自动播放. ($(function(){ $(function(){ /* ** 复选框*/ $('.ul-radio').on(' ...
- Max Consecutive Ones
Given a binary array, find the maximum number of consecutive 1s in this array. Example 1: Input: [1, ...