Morley's Theorem

【题目链接】Morley's Theorem

【题目类型】几何

&题解:

蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传混了

&代码:

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
typedef long long ll;
const int maxn= 1e3 +7; //蓝书P255
//1.点的定义
struct Point {
double x,y;
Point (double x=0,double y=0):x(x),y(y) {}
};
//点和向量是一样的内容 所以会出来2个名字
typedef Point Vector;
//向量+向量=向量, 点+向量=点
Vector operator + (Vector A,Vector B) {return Vector(A.x+B.x,A.y+B.y);}
//点-点=向量
Vector operator - (Point A,Point B) {return Vector(A.x-B.x,A.y-B.y);}
//向量*数=向量
Vector operator * (Vector A,double p) {return Vector(A.x*p,A.y*p);}
//向量/数=向量
Vector operator / (Vector A,double p) {return Vector(A.x/p,A.y/p);}
bool operator < (const Point& a,const Point& b) {return a.x<b.x||(a.x==b.x&&a.y<b.y);} const double eps=1e-10;
//doublue的三态函数
int dcmp(double x) {
if(fabs(x)<eps) x=0;
else return x<0?-1:1;
}
bool operator == (const Point& a,const Point& b) {return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;} //点积
double Dot(Vector A,Vector B) {return A.x*B.x+A.y*B.y;}
//向量长度
double Length(Vector A) {return sqrt(Dot(A,A));}
//向量夹角
double Angle(Vector A,Vector B) {return acos(Dot(A,B)/Length(A)/Length(B));} //叉积
double Cross(Vector A,Vector B) {return A.x*B.y-A.y*B.x;}
//有向面积,数值是三角形面积的2倍
double Area2(Point A,Point B,Point C) {return Cross(B-A,C-A);} //向量旋转,doublue的都是弧度
Vector Rotate(Vector A,double rad) {
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
} //求单位法向量
Vector Normal(Vector A) {
double L=Length(A);
return Vector(-A.y/L,A.x/L);
} //2.点和直线
//调用前请确保两条直线P+tv和Q+tw有唯一交点.当且仅当Cross(v,w)非0
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w) {
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} //点P到直线(过点A,B)的距离
double DistanceToLine(Point P,Point A,Point B) {
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/Length(v1);//不加fabs,得到的是有向距离
} //点P到线段AB的距离
double DistanceToSegment(Point P,Point A,Point B) {
if(A==B) return Length(P-A);
Vector v1=B-A,v2=P-A,v3=P-B;
if(dcmp(Dot(v1,v2))>0) return Length(v2);
else if(dcmp(Dot(v1,v3))>0) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
} //求点P在直线AB的投影点Q
Point GetLineProjection(Point P,Point A,Point B) {
Vector v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
} //线段相交判定,两线段恰好有一个公共点,且不在任何一条线段的端点
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2) {
double c1=Cross(a2-a1,b1-a1), c2=Cross(a2-a1,b2-a1),
c3=Cross(b2-b1,a1-b1), c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
} //判断点P是否在线段AB上(不包含线段的端点)
bool OnSegment(Point p,Point a1,Point a2) {
return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<0;
} //多边形的有向面积
double PolygonArea(Point* p,int n) {
double area=0;
for(int i=1; i<n-1; i++) {
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
}
return area/2;
} //解题代码
Point GetD(Point A,Point B,Point C) {
double tht1=Angle(A-B,C-B),tht2=Angle(A-C,B-C);
Vector v1=Rotate(C-B,tht1/3),v2=Rotate(B-C,-tht2/3);//顺时针转,角度呀变负,逆时针转,角度是正的
return GetLineIntersection(B,v1,C,v2);
}
int main() {
//("E:1.in","r",stdin);
int T;
Point A,B,C,D,E,F;
scanf("%d",&T);
while(T--) {
scanf("%lf%lf%lf%lf%lf%lf",&A.x,&A.y,&B.x,&B.y,&C.x,&C.y);
D=GetD(A,B,C); E=GetD(B,C,A); F=GetD(C,A,B);
printf("%f %f %f %f %f %f\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return 0;
}

UVA 11178 Morley's Theorem(几何)的更多相关文章

  1. UVa 11178 Morley's Theorem (几何问题)

    题意:给定三角形的三个点,让你求它每个角的三等分线所交的顶点. 析:根据自己的以前的数学知识,应该很容易想到思想,比如D点,就是应该求直线BD和CD的交点, 以前还得自己算,现在计算机帮你算,更方便, ...

  2. uva 11178 - Morley's Theorem

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  3. UVA 11178 Morley's Theorem (坐标旋转)

    题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...

  4. UVa 11178:Morley’s Theorem(两射线交点)

    Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...

  5. 简单几何(求交点) UVA 11178 Morley's Theorem

    题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /*********************************************** ...

  6. UVA 11178 - Morley's Theorem 向量

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  7. Uva 11178 Morley's Theorem 向量旋转+求直线交点

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...

  8. UVA 11178 Morley's Theorem(旋转+直线交点)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...

  9. UVA 11178 Morley's Theorem 计算几何模板

    题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...

随机推荐

  1. Django 的操作

    安装: pip install Django 创建django工程 django-admin startproject  mysite python manage.py startapp blog / ...

  2. isprime_判断质数

    判断质数的方法有很多,首先是最简单的试除法,判断n以内的质数的话时间复杂度为n*sqrt(n)当然是很慢的了 下面提供三种判断质数的方法: 首先是跑5051ms的这个是埃拉托斯特尼筛法 且不加优化 核 ...

  3. 《Mysql 字符集》

    一:什么是字符集呢? - 引用书中的例子:同样是大熊猫,在大陆叫熊猫,在台湾叫猫熊,在美国叫Panda,要到了非洲,可能都不知道叫啥(于是就乱码了). - 在例子之后引入字符集的概念:字符集就是指符号 ...

  4. MyEclipse中JDK运行环境和编译环境的设置

    一.设置myEclipse中新项目使用的JDK 1.运行环境   [Window]->[Preferences]->[Java]->[Installed JREs] 步骤:Add-- ...

  5. 洛谷P3233 世界树 [HNOI2014] 虚树

    正解:虚树 解题报告: 传送门! 首先看到这种就要想到虚树这个是毫无疑问的QwQ 建虚树什么的都可以循规蹈矩地做,不说辣,具体可以看下虚树学习笔记什么的看下板子 但是建好虚树之后怎么搞还是有点儿讲究, ...

  6. JavaScript 数组(Array)对象

    1.Array相关的属性和方法 Array对象属性 constructor 返回对创建此对象的数组函数的引用: length 设置或返回数组中元素的数目: prototype 使您有能力向对象添加属性 ...

  7. FPGA设计中的异步复位、同步释放思想

    1.一个简单的异步复位例子: module test( input clk, input rst_n, input data_in, output reg out ); always@(posedge ...

  8. python-面向对象-01_面向对象(OOP)基本概念

    面向对象(OOP)基本概念 面向对象编程 —— Object Oriented Programming 简写 OOP 目标 了解 面向对象 基本概念 01. 面向对象基本概念 我们之前学习的编程方式就 ...

  9. php中$this->的用法简单介绍

    php中我们一般是先声明一个类,然后用这个类去实例化对象!$this 的含义是表示实例化后的具体对象!$this->表示在类本身内部使用本类的属性或者方法.‘->’符号是“插入式解引用操作 ...

  10. php 7 新特性整理小结

    php 7 比php 5 性能提升了很多,php 7 新特性主要表现在:1.变量存储字节减小,减少内存占用,提升变量操作速度:2.改善数组结构,数组元素和hash映射表被分配在同一块内存里,降低了内存 ...