基于Python和TensorFlow实现BERT模型应用
本文分享自华为云社区《使用Python实现深度学习模型:BERT模型教程》,作者: Echo_Wish。
BERT(Bidirectional Encoder Representations from Transformers)是Google提出的一种用于自然语言处理(NLP)的预训练模型。BERT通过双向训练Transformer,能够捕捉到文本中词语的上下文信息,是NLP领域的一个里程碑。
在本文中,我们将详细介绍BERT模型的基本原理,并使用Python和TensorFlow实现一个简单的BERT模型应用。
1. BERT模型简介
1.1 Transformer模型复习
BERT基于Transformer架构。Transformer由编码器(Encoder)和解码器(Decoder)组成,但BERT只使用编码器部分。编码器的主要组件包括:
多头自注意力机制(Multi-Head Self-Attention):计算序列中每个位置对其他位置的注意力分数。
前馈神经网络(Feed-Forward Neural Network):对每个位置的表示进行独立的非线性变换。
1.2 BERT的预训练与微调
BERT的训练分为两步:
预训练(Pre-training):在大规模语料库上进行无监督训练,使用两个任务:
- 遮蔽语言模型(Masked Language Model, MLM):随机遮蔽输入文本中的一些词,并要求模型预测这些被遮蔽的词。
- 下一句预测(Next Sentence Prediction, NSP):给定句子对,预测第二个句子是否是第一个句子的下文。
微调(Fine-tuning):在特定任务上进行有监督训练,如分类、问答等。
2. 使用Python和TensorFlow实现BERT模型
2.1 安装依赖
首先,安装必要的Python包,包括TensorFlow和Transformers(Hugging Face的库)。
pip install tensorflow transformers
2.2 加载预训练BERT模型
我们使用Hugging Face的Transformers库加载预训练的BERT模型和对应的分词器(Tokenizer)。
import tensorflow as tf
from transformers import BertTokenizer, TFBertModel # 加载预训练的BERT分词器和模型
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = TFBertModel.from_pretrained('bert-base-uncased')
2.3 数据预处理
我们将使用一个简单的句子分类任务作为示例。假设我们有以下数据:
sentences = ["I love machine learning.", "BERT is a powerful model.", "I enjoy studying AI."]
labels = [1, 1, 1] # 假设1表示积极,0表示消极
我们需要将句子转换为BERT输入格式,包括输入ID、注意力掩码等。
# 将句子转换为BERT输入格式
input_ids = []
attention_masks = [] for sentence in sentences:
encoded_dict = tokenizer.encode_plus(
sentence, # 输入文本
add_special_tokens = True, # 添加特殊[CLS]和[SEP]标记
max_length = 64, # 填充和截断长度
pad_to_max_length = True,
return_attention_mask = True, # 返回注意力掩码
return_tensors = 'tf' # 返回TensorFlow张量
) input_ids.append(encoded_dict['input_ids'])
attention_masks.append(encoded_dict['attention_mask']) input_ids = tf.concat(input_ids, axis=0)
attention_masks = tf.concat(attention_masks, axis=0)
labels = tf.convert_to_tensor(labels)
2.4 构建BERT分类模型
我们在预训练的BERT模型基础上添加一个分类层。
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Model class BertClassifier(Model):
def __init__(self, bert):
super(BertClassifier, self).__init__()
self.bert = bert
self.dropout = tf.keras.layers.Dropout(0.3)
self.classifier = Dense(1, activation='sigmoid') def call(self, input_ids, attention_mask):
outputs = self.bert(input_ids, attention_mask=attention_mask)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
return self.classifier(pooled_output) # 实例化BERT分类模型
bert_classifier = BertClassifier(model)
2.5 编译和训练模型
编译模型并进行训练。
# 编译模型
optimizer = tf.keras.optimizers.Adam(learning_rate=2e-5)
loss = tf.keras.losses.BinaryCrossentropy()
metric = tf.keras.metrics.BinaryAccuracy() bert_classifier.compile(optimizer=optimizer, loss=loss, metrics=[metric]) # 训练模型
bert_classifier.fit([input_ids, attention_masks], labels, epochs=3, batch_size=2)
2.6 评估模型
训练完成后,我们可以对新数据进行预测。
# 预测新句子
new_sentences = ["AI is fascinating.", "I dislike machine learning."]
new_input_ids = []
new_attention_masks = [] for sentence in new_sentences:
encoded_dict = tokenizer.encode_plus(
sentence,
add_special_tokens = True,
max_length = 64,
pad_to_max_length = True,
return_attention_mask = True,
return_tensors = 'tf'
) new_input_ids.append(encoded_dict['input_ids'])
new_attention_masks.append(encoded_dict['attention_mask']) new_input_ids = tf.concat(new_input_ids, axis=0)
new_attention_masks = tf.concat(new_attention_masks, axis=0) # 进行预测
predictions = bert_classifier.predict([new_input_ids, new_attention_masks])
print(predictions)
3. 总结
在本文中,我们详细介绍了BERT模型的基本原理,并使用Python和TensorFlow实现了一个简单的BERT分类模型。通过本文的教程,希望你能够理解BERT模型的工作原理和实现方法,并能够应用于自己的任务中。随着对BERT模型的理解加深,你可以尝试实现更复杂的任务,如问答系统、命名实体识别等。
基于Python和TensorFlow实现BERT模型应用的更多相关文章
- 基于Python的信用评分卡模型分析(二)
上一篇文章基于Python的信用评分卡模型分析(一)已经介绍了信用评分卡模型的数据预处理.探索性数据分析.变量分箱和变量选择等.接下来我们将继续讨论信用评分卡的模型实现和分析,信用评分的方法和自动评分 ...
- 基于Python的信用评分卡模型分析(一)
信用风险计量体系包括主体评级模型和债项评级两部分.主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡.B卡.C卡和F卡:债项评级模型通常按照主体的融资用途,分为 ...
- 基于Spark和Tensorflow构建DCN模型进行CTR预测
实验介绍 数据采用Criteo Display Ads.这个数据一共11G,有13个integer features,26个categorical features. Spark 由于数据比较大,且只 ...
- 吴裕雄 python 神经网络——TensorFlow实现回归模型训练预测MNIST手写数据集
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...
- 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集
import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = in ...
- 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...
- 吴裕雄 PYTHON 神经网络——TENSORFLOW 滑动平均模型
import tensorflow as tf v1 = tf.Variable(0, dtype=tf.float32) step = tf.Variable(0, trainable=False) ...
- 吴裕雄 python 神经网络——TensorFlow 实现LeNet-5模型处理MNIST手写数据集
import os import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import ...
- 基于python的数学建模---图论模型(Floyd)
import numpy as np inf = 99999 # 不连通值 mtx_graph = [[0, 1, inf, 3, inf, inf, inf, inf, inf], [1, 0, 5 ...
- 基于python的数学建模---图论模型(Dijkstra)
from collections import defaultdict from heapq import * # 堆--先进后出 inf = 99999 # 不连通值 mtx_graph = [[0 ...
随机推荐
- .Net项目部署到Docker
.Net项目部署到Docker 环境 linux docker .Net 7 步骤 编写Dockerfile 上传项目文件到linux 运行项目文件到docker 一.设置项目端口 在Program. ...
- Unity 热更--AssetBundle学习笔记 0.7
AssetBundle AB包是什么? AssetBundle又称AB包,是Unity提供的一种用于存储资源的资源压缩包. Unity中的AssetBundle系统是对资源管理的一种扩展,通过将资源分 ...
- List集合中获取重复元素
一.方法1 ## 测试数据 List<String> words = Arrays.asList("a", "b", "c", ...
- springboot中quartz定时器的postgresql建表语句
建表语句如下: DROP TABLE IF EXISTS QRTZ_FIRED_TRIGGERS; DROP TABLE IF EXISTS QRTZ_PAUSED_TRIGGER_GRPS; DRO ...
- 数据库—SQL语言学习
文章目录 SQL 数据类型 重要的关键字 定义数据库 数据库的文件 table创建与删除 表的定义 表的alter 表的删除 视图 定义视图 删除视图 更新视图 插入视图 视图总结 索引 SQL单表查 ...
- Angular的管道
Angular的管道可以看作成是一个数据格式化展示的工具.管道可以将数据格式化显示,而不改变源数据.获取数据可能简单到创建一个局部变量就行,也可能复杂到从WebSocket中获取数据流.一旦取到数据, ...
- pageoffice 6 实现pdf加盖印章和签字功能
PageOffice支持两种电子印章方案,可实现对Word.Excel.PDF文档加盖PageOffice自带印章或ZoomSeal电子印章(全方位保护.防篡改.防伪造).Word和Excel的盖章功 ...
- swagger 的配置
1,开启swagger : c.IncludeXmlComments(GetXmlCommentsPath()); protected static string GetXmlCommentsPath ...
- 制作SSL证书(签发免费证书)
制作SSL证书(签发免费证书) 下载证书生成器 wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 wget https://pkg.cfssl.org ...
- 通过 InnoSetup 美化安装界面
InnoSetup 的美化相应的帖子也比较多,但是代码不是很全...所以我专门出了这篇文章来记录下这个美化过程.废话不多说,先上个成果: 前端er们可以直接下载 vue-nw-seed 这个分支,一键 ...