在本系列的文章中已经写了二叉树(Binary Tree)深搜(DFS)与广搜(BFS)哈希表(Hash Table)等等,计划接下来要写的是动态规划(Dynamic Programming,DP),它算得上是最灵活的一种算法。回忆笔者学习动态规划的时候,最开始接触的是经典的 “01背包” 问题;不过现在想起来,以“01背包问题”作为初次接触的动态规划算法的问题_并不友好_;花费了不少时间才慢慢感悟到动态规划算法的核心思想。

先前的文章中涉及了不少搜索算法,在搜索算法上融入动态规划算法思想的 记忆化搜索(Memorize Search)不妨是一个不错的_承前启后_的选择。相对于 “01背包”类问题,记忆化搜索 对初学者 理解 动态规划 更友好,也能更好的感受到其魅力所在。

记忆化搜索,所谓 “记忆” 引用 Geeksforgeeks 网站上介绍记忆搜索原文中一句话就是 “to transform the results of a function into something to remember.” 把函数的结果存储下来作为 “记忆”。将“记忆”应用于搜索算法上,也就是搜索到有记录了函数结果的地方,其实就不需要再进行函数计算,直接返回 “记忆” 的结果即可。

记忆化搜索是一种自顶向下(Top-Down)分析的算法,文字描述过于悬浮于理论,保持本系列文风且用算法题来看下记忆化搜索算法具体的内容。

自顶向下(Top-Down)

LeetCode 329. 矩阵中的最长递增路径【困难】

给定一个 m x n 整数矩阵 matrix ,找出其中 最长递增路径 的长度。

对于每个单元格,你可以往上,下,左,右四个方向移动。 你 不能 在 对角线 方向上移动或移动到 边界外。(即不允许环绕)。

  • 直接顺着题意进行分析,找到 “最长递增路径” 直接用搜索遍历,把 matrix每个单元格的最长递增路径都计算下,返回其中最长的路径。不妨就假设下有一个 search的函数能够计算出 以当前单元格为起点的最长递增路径长度。遍历过程中 的最大长度 存储再 max 中,最后返回即可,代码如下:
// 假设中的函数
public int search(int[][] matrix,int x,int y){
int max;
return max;
} public int longestIncreasingPath(int[][] matrix) { int max = 0;
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[0].length; j++) {
//(i,j)格的最长递增路径长度
max = Math.max(max,search(matrix,i,j));
}
}
return max;
}
  • 问题开始关键点现在变成了 search 函数的实现;接着顺着题意分析,可以往上,下,左,右四个方向移动.首先考虑一个方向情况,只往上方向移动且可以往上移动(上方相邻的单元格大于当前单元格,递增),那么此时 当前单元格的最大路径长度就是 上方单元格的最大路径 + 1,其中1代表当前单元格。
public int search(int[][] matrix,int x,int y){

	int number = matrix[x][y],up = 1;

	// 保障可以往“上”移动, x-1 没有越边界( x > 0 )
// 且是 递增的 matrix[x-1][y] > number
if( x > 0 && matrix[x-1][y] > number ){ // 递归调用,同类子问题,(x-1,y)格的最长递增路径长度
up += search( matrix, x-1, y );
} return up;
}
  • 如此,扩展到 四个方向,最终当前单元格最大路径就是 四个方向中取最大的返回。
public int search(int[][] matrix,int x,int y){

        int number = matrix[x][y],up = 1,down =1,left=1,right=1;

        if(x>0 && matrix[x-1][y] > number){
up += search(matrix,x-1,y);
}
if(x+1<matrix.length && matrix[x+1][y] > number){
down += search(matrix,x+1,y);
}
if(y+1<matrix[0].length && matrix[x][y+1] > number){
right += search(matrix,x,y+1);
}
if(y>0 && matrix[x][y-1] > number){
left += search(matrix,x,y-1);
} return Math.max(Math.max(up,down),Math.max(right,left));
}
  • 实现到这里按照搜索思路的算法已经完成;不过会发现性能不高,分析过程会发现调用 search函数 时候,同样一格位置会计算多次。此时联系想想先前提到的 “记忆” ,把函数的结果存储下来作为 “记忆”,也就是用 一个二维数组 cahce 缓存起来 已经计算过单元的结果。

    search 实现改为 (cache需要在 longestIncreasingPath 根据 matrx大小 new下,这里略) ,代码如下:

public int[][] cache = null;

public int search(int[][] matrix,int x,int y){

        if(0 != cache[x][y])
return cache[x][y]; int number = matrix[x][y],up = 1,down =1,left=1,right=1;
if(x>0 && matrix[x-1][y] > number){
up += search(matrix,x-1,y);
}
if(x+1<matrix.length && matrix[x+1][y] > number){
down += search(matrix,x+1,y);
}
if(y+1<matrix[0].length && matrix[x][y+1] > number){
right += search(matrix,x,y+1);
}
if(y>0 && matrix[x][y-1] > number){
left += search(matrix,x,y-1);
}
// 存储 “记忆”
cache[x][y] = Math.max(Math.max(up,down),Math.max(right,left));
return cache[x][y];
}
  • 到此,已经按照记忆化搜索算法思路完成了问题的解决。

回顾下记忆化搜索解题过程,我们是从算法问题出发 -> 分析需要完成的计算(子问题)-> 进一步进行解决。这其实就是 自顶向下(Top-Down)的思考方式。

记忆化搜索 与 动态规划

再来看"记忆",cache[x][y] 所记录的是 x,y 这个单元格已经计算过的 最大路径长度当前单元格 的最大路径长度使用上、下、左、右四个方向上的单元格 最大路径长度 来进行计算 ,使用"记忆" 其实就是在使用子问题的最优解。


current_max = Max( up+1, down+1, left+1, right+1 )

另外一个角度描述,规划决策 当前单元格的最大路径 是根据 (上、下、左、右)相邻四个方向上的单元格最大路径 进行的计算。相邻四个方向上的最大路径(子问题最优解) 并非一开始静态写入下来,而是在程序运行过程中至少计算一次存储下来,可看作 动态的计算。根据动态计算子问题最优结果来进行规划决策当前最优结果,也就是所谓 动态规划(Dynamic Programming)的字面意思。

可以多体会下: 解决最优化问题,根据子问题的最优结果 规划决策 -> 当前问题最优结果 -> 进而求解最初问题。

所以有一种说法就是:记忆化搜索 是 动态规划 自顶向下(Top-Down)分析的一种实现形式,通常用递归来实现。

最后总结本文

  1. 本系列文章中写此篇 承前启后的思考,记忆化搜索 的基本概念;
  2. 通过一道题演示 自顶向下(Top-Down)的分析,实际应用记忆化搜索解决 具体算法问题;
  3. 解读 记忆化搜索 与 动态规划 的关系,以及动态规划一些概念;

下一篇咱们再一起继续解读 动态规划(Dynamic Programming) ,欢迎关注 Java研究者专栏、博客、公众号等

数据结构与算法 | 记忆化搜索(Memorize Search)的更多相关文章

  1. hdoj1078(介绍记忆化搜索及其模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1078 思路: 这是一道典型的记忆化搜索模板题. 先介绍记忆化搜索,本质是搜索+DP. 一般说来,动态规 ...

  2. 数位dp/记忆化搜索

    一.引例 #1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an  ...

  3. ZOJ3795 Grouping(强连通分量+缩点+记忆化搜索)

    题目给一张有向图,要把点分组,问最少要几个组使得同组内的任意两点不连通. 首先考虑找出强连通分量缩点后形成DAG,强连通分量内的点肯定各自一组,两个强连通分量的拓扑序能确定的也得各自一组. 能在同一组 ...

  4. 多校5 1001 HDU5781 ATM Mechine 记忆化搜索+概率

    // 多校5 1001 HDU5781 ATM Mechine // http://acm.hdu.edu.cn/search.php?field=problem&key=2016+Multi ...

  5. poj--1579--(DFS+记忆化搜索之经典)

    记忆化搜索   记忆化搜索:算法上依然是搜索的流程,但是搜索到的一些解用 动态规划的那种思想和模式作一些保存. 一般说来,动态规划总要遍历所有的状态,而搜索可以排除一些无效状态. 更重要的是搜索还可以 ...

  6. UVA1351-----String Compression-----区间DP(记忆化搜索实现)

    本文出自:http://blog.csdn.net/dr5459 题目地址: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&a ...

  7. zoj 1107 FatMouse and Cheese(记忆化搜索)

    题目链接:点击链接 题目大意:老鼠从(0,0)出发,每次在同一个方向上最多前进k步,且每次到达的位置上的数字都要比上一个位置上的数字大,求老鼠经过的位置上的数字的和的最大值 #include<s ...

  8. vj1011:记忆化搜索

    vj1011:记忆化搜索 这题就是很简单的记忆化搜索即可,和经典题目滑雪简直一模一样 对于记忆化搜索,我也是暑假看了ccy大神的题解才有所领悟的 其实也就是DFS+mark 主要的部分 int sea ...

  9. 【noip 2009】 乌龟棋 记忆化搜索&动规

    题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...

  10. 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)

    心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...

随机推荐

  1. Git:多人写作时,如何保证代码一致性

    解决方案 git add . git commit -m "message" git pull origin develop # 拉取并合并dev分支上的代码 git push

  2. APubPlat 一款Devops自动化部署、持续集成、堡垒机开源项目、友好的Web Terminal

    嗨.很高心你能进入这里,我是zane,  在这里给你介绍一款完整的Devops自动化部署工具 APubPlat - 一款完整的Devops自动化部署.持续集成.堡垒机.并且友好的Web Termina ...

  3. Python类型提示

    摘自:Python 类型提示简介 - FastAPI (tiangolo.com) 快速入门 类型提示用于声明一个变量的类型,在Python 3.6+版本的时候引入. 示例: def get_full ...

  4. php批量同步数据

    php批量同步流程 首先分页获取数据 创建临时表 批量添加数据 备份原表 删除原表 修改临时表表名改为原表 代码 1 <?php 2 3 class Stock{ 4 5 private $da ...

  5. Airtest的iOS实用接口介绍

    1. 前言 前段时间Airtest更新了1.3.0.1版本,里面涉及非常多的iOS功能新增和改动,今天想详细跟大家聊一下里面的iOS设备接口. PS:本文示例均使用本地连接的iOS设备,Airtest ...

  6. 完美解决Content type ‘multipart/form-data;boundary=----------0467042;charset=UTF-8‘ not supported问题

    一.前言 ​ 今天在做文件上传功能出现了该问题,该接口如下: @PostMapping("/upload") public Boolean upload(@RequestParam ...

  7. 微信小程序2--WXML与WXSS

    编辑WXML文件 我们在开发者工具里打开之前修改的模板小程序home文件夹下的home.wxml,里面有如下代码 <!--pages/home/home.wxml--> <text& ...

  8. 我的新书《Flink大数据分析实战》出版啦

  9. 最接地气的.NET微服务框架

    前言: "人必有所执,方能有所成",从2018年底我就开始规划要写一个.NET微服务框架,5年了,今天终于正式发布了. 正文: Wing 致力于打造一个功能强大.最接地气的.NET ...

  10. Kafka与RabbitMQ

    一.什么是kafka,什么是rabbit   Kafka是由Scala语言开发的一种分布式流处理框架,主要用于处理活跃的流式数据,以及大数据量的数据处理.它采用发布-订阅模型,支持消息的批量处理,数据 ...