[CF1788F] XOR, Tree, and Queries
题目描述
You are given a tree of $ n $ vertices. The vertices are numbered from $ 1 $ to $ n $ .
You will need to assign a weight to each edge. Let the weight of the $ i $ -th edge be $ a_i $ ( $ 1 \leq i \leq n-1 $ ). The weight of each edge should be an integer between $ 0 $ and $ 2^{30}-1 $ , inclusive.
You are given $ q $ conditions. Each condition consists of three integers $ u $ , $ v $ , and $ x $ . This means that the bitwise XOR of all edges on the shortest path from $ u $ to $ v $ should be $ x $ .
Find out if there exist $ a_1, a_2, \ldots, a_{n-1} $ that satisfy the given conditions. If yes, print a solution such that $ a_1 \oplus a_2 \oplus \ldots \oplus a_{n-1} $ is the smallest. Here, $ \oplus $ denotes the bitwise XOR operation.
If there are multiple solutions such that $ a_1 \oplus a_2 \oplus \ldots \oplus a_{n-1} $ is the smallest, print any.
输入格式
The first line contains two integers $ n $ and $ q $ ( $ 2 \le n \le 2.5 \cdot 10^5 $ , $ 0 \le q \le 2.5 \cdot 10^5 $ ).
The $ i $ -th of the following $ n-1 $ lines contains two integers $ x_i $ and $ y_i $ ( $ 1 \le x_i, y_i \le n $ , $ x_i \neq y_i $ ), meaning that the $ i $ -th edge connects vertices $ x_i $ and $ y_i $ in the tree.
It is guaranteed that the given edges form a tree.
The following $ q $ lines contain information about conditions.
Each line contains three integers $ u $ , $ v $ , $ x $ ( $ 1 \le u, v \le n $ , $ u \neq v $ , $ 0 \le x \le 2^{30}-1 $ ), meaning that the bitwise XOR of all edges on the shortest path from $ u $ to $ v $ should be $ x $ .
输出格式
If there do not exist $ a_1 $ , $ a_2 $ , ..., $ a_{n-1} $ that satisfy the given conditions, print "No".
Otherwise, print "Yes" in the first line.
Then print $ n-1 $ integers on the next line, where the $ i $ -th integer is the weight of the $ i $ -th edge. If there are multiple solutions that satisfy the given conditions, print a solution such that $ a_1 \oplus a_2 \oplus \ldots \oplus a_{n-1} $ is the smallest.
If there are multiple solutions such that $ a_1 \oplus a_2 \oplus \ldots \oplus a_{n-1} $ is the smallest, print any.
When printing "Yes" or "No", you can print each letter in any case (either upper or lower). For example, the strings "yEs", "yes", "Yes", and "YES" will be recognized as positive responses.
样例 #1
样例输入 #1
4 4
1 2
2 3
3 4
1 4 3
2 4 2
1 3 1
2 3 1
样例输出 #1
No
样例 #2
样例输入 #2
6 2
1 2
2 3
3 4
2 5
5 6
1 4 2
2 6 7
样例输出 #2
Yes
4 2 4 1 6
样例 #3
样例输入 #3
6 2
1 2
2 3
3 4
2 5
5 6
1 4 3
1 6 5
样例输出 #3
Yes
6 1 4 3 0
提示
For the first example, there does not exist a set of edge weights that satisfies the given conditions.
For the second example, the two given conditions are $ a_1 \oplus a_2 \oplus a_3=2 $ and $ a_4 \oplus a_5=7 $ . There can be multiple solutions, for example, $ (a_1, a_2, a_3, a_4, a_5)=(1, 2, 1, 4, 3) $ .
For the third example, the two given conditions are $ a_1 \oplus a_2 \oplus a_3=3 $ and $ a_1 \oplus a_4 \oplus a_5=5 $ . There are multiple solutions that satisfy the given conditions.
$ (a_1, a_2, a_3, a_4, a_5)=(1, 1, 3, 4, 0) $ satisfies the given conditions, but the bitwise XOR of all edge weights is $ 7 $ , which does not have the smallest $ a_1 \oplus a_2 \oplus \ldots \oplus a_{n-1} $ , so it cannot be the answer.
在树上路径的异或值有一个很巧妙的结论:设一个根,如果根节点到点 \(x\) 的异或和为 \(v_x\),那么路径 \((x,y)\) 的异或和为 \(v_x\oplus v_y\)
那么此时一个限制的意思就是 \(v_x\oplus v_y=a\),转化一下,\(v_x\oplus a=v_y\),那么此时可以通过构图的方式判定是否有解。
至于使所有点的权值异或和最小。那么考虑一个 \(v_x\) 什么时候会被算到总的点权异或和里面,当且仅当 \(x\) 在树中的度数是奇数。
那么此时要让异或和最小,可以将上面判断是否有解的图的每一个连通块钦定一个点 \(a\) 为代表,那么连通块中的每一个点的 \(v\) 值可以写为 \(v_a\oplus w\),那么如果这一个点会计算入总点权异或和,答案一定会多异或上一个 \(w\),\(v_a\) 是否会被计入也会发生改变。
然后此时如果没有一个连通块的点权会被计入答案,那就随便定 \(v_a\),不影响答案。否则可以记录所有的点的 \(w\) 异或之和为 \(s\),将一个被记入点权的 \(a\) 赋值为 \(s\),此时总异或和为0。
// LUOGU_RID: 103370522
#include<bits/stdc++.h>
using namespace std;
const int N=3e5+5;
int n,q,d[N],in[N],f[N],p[N],ans,fl,a[N],b[N];
struct graph{
int hd[N],e_num;
struct edge{
int v,nxt,w;
}e[N<<1];
void add_edge(int u,int v,int w)
{
e[++e_num]=(edge){v,hd[u],w};
hd[u]=e_num;
// printf("%d %d %d\n",u,v,w);
}
}g,h;
void dfs(int x,int w,int t)
{
if(d[x]^w&&f[x])
{
puts("No");
exit(0);
}
if(!f[x])
{
d[x]=w,f[x]=t;
// printf("%d %d\n",x,f[x]);
for(int i=h.hd[x];i;i=h.e[i].nxt)
{
// printf("qzmyyds:%d\n",e[i].v);
dfs(h.e[i].v,w^h.e[i].w,t);
}
}
}
void sou(int x,int y)
{
for(int i=g.hd[x];i;i=g.e[i].nxt)
{
if(g.e[i].v^y)
sou(g.e[i].v,x);
else
b[g.e[i].w]=a[x]^a[y];
}
}
int main()
{
// memset(d,-1,sizeof(d));
scanf("%d%d",&n,&q);
for(int i=1;i<n;++i)
{
int u,v;
scanf("%d%d",&u,&v);
g.add_edge(u,v,i);
g.add_edge(v,u,i);
++in[u],++in[v];
}
while(q--)
{
int u,v,x;
scanf("%d%d%d",&u,&v,&x);
// printf("%d\n",x);
h.add_edge(u,v,x);
h.add_edge(v,u,x);
}
for(int i=1;i<=n;i++)
if(!f[i])
dfs(i,0,i);
// for(int i=1;i<=n;i++)
// printf("%d %d\n",f[i],d[i]);
puts("Yes");
for(int i=1;i<=n;i++)
if(in[i]&1)
p[f[i]]^=1,ans^=d[i];
// for(int i=1;i<=n;i++)
// printf("%d ",p[i]);
// puts("") ;
p[1]=0;
for(int i=2;i<=n;i++)
{
if(f[i]==i&&p[i])
p[i]=ans,ans=0;
// printf("hjhyyds:%d %d\n",d[i],p[f[i]]);
a[i]=d[i]^p[f[i]];
}
// for(int i=1;i<=n;i++)
// print
sou(1,0);
for(int i=1;i<n;i++)
printf("%d ",b[i]);
return 0;
}
[CF1788F] XOR, Tree, and Queries的更多相关文章
- [Codeforces Round #221 (Div. 1)][D. Tree and Queries]
题目链接:375D - Tree and Queries 题目大意:给你一个有n个点的树,每个点都有其对应的颜色,给出m次询问(v,k),问v的子树中有多少种颜色至少出现k次 题解:先对所有的询问进行 ...
- Codeforces 375D Tree and Queries(DFS序+莫队+树状数组)
题目链接 Tree and Queries 题目大意 给出一棵树和每个节点的颜色.每次询问$vj, kj$ 你需要回答在以$vj$为根的子树中满足条件的的颜色数目, 条件:具有该颜色的节点数量至少 ...
- CodeForces 375D Tree and Queries 莫队||DFS序
Tree and Queries 题意:有一颗以1号节点为根的树,每一个节点有一个自己的颜色,求出节点v的子数上颜色出现次数>=k的颜色种类. 题解:使用莫队处理这个问题,将树转变成DFS序区间 ...
- [多校联考2019(Round 5 T1)] [ATCoder3912]Xor Tree(状压dp)
[多校联考2019(Round 5)] [ATCoder3912]Xor Tree(状压dp) 题面 给出一棵n个点的树,每条边有边权v,每次操作选中两个点,将这两个点之间的路径上的边权全部异或某个值 ...
- 「AGC035C」 Skolem XOR Tree
「AGC035C」 Skolem XOR Tree 感觉有那么一点点上道了? 首先对于一个 \(n\),若 \(n\equiv 3 \pmod 4\),我们很快能够构造出一个合法解如 \(n,n-1, ...
- codeforces 375D:Tree and Queries
Description You have a rooted tree consisting of n vertices. Each vertex of the tree has some color. ...
- CF375D Tree and Queries
题意翻译 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. 感谢@elijahqi 提供的翻译 ...
- CodeForces 376F Tree and Queries(假·树上莫队)
You have a rooted tree consisting of n vertices. Each vertex of the tree has some color. We will ass ...
- 【思维题 状压dp】APC001F - XOR Tree
可能算是道中规中矩的套路题吧…… Time limit : 2sec / Memory limit : 256MB Problem Statement You are given a tree wit ...
- AtCoder - 3913 XOR Tree
Problem Statement You are given a tree with N vertices. The vertices are numbered 0 through N−1, and ...
随机推荐
- papricice
2023-07-14 题目 题目传送门 题目大意 给定一个 \(n\) 个点的树,这 \(n\) 个点编号为 \(1\) 到 \(n\). 现在要选择断掉两条边,会形成三个连通块,假设这三个连通块内的 ...
- java学习阶段一
扩展名默认没有打开 FIRST APP public class HelloWorld { public static void main (String[] args){ System.out.pr ...
- 揭秘ChatGPT,如何打造自己的自定义指令
一.ChatGPT-0720更新 又在深夜,正要打开ChatGPT官网测试下pdf对话功能,发现ChatGPT又有更新.本次更新总结有2点: 1.对于Plus用户,GPT-4的使用限额从25条/3h提 ...
- 关于API数据接口获取商品的数据的说明
获取商品数据已经成为许多应用程序的重要组成部分.为了实现这一目标,许多公司和技术开发者使用API数据接口来获取相关数据.本文将详细介绍如何使用API数据接口获取商品数据,并使用Python作为编程 ...
- API数据接口的应用步骤
API(Application Programming Interface)是现代软件应用程序开发中的一项重要技术,它允许不同的应用程序之间进行通信和数据交换.API接口通过提供统一的访问点,使得应用 ...
- xlwt写入excel时候的合并单元格
简单版 import xlwt workbook = xlwt.Workbook() worksheet = workbook.add_sheet('My sheet') # 合并第0行的第0列到第3 ...
- 循序渐进介绍基于CommunityToolkit.Mvvm 和HandyControl的WPF应用端开发(2)
在前面随笔<循序渐进介绍基于CommunityToolkit.Mvvm 和HandyControl的WPF应用端开发(1)>中介绍了Mvvm 的开发,以及一些界面效果,本篇随笔继续深入探讨 ...
- 【RocketMQ】顺序消息实现总结
全局有序 在RocketMQ中,如果使消息全局有序,可以为Topic设置一个消息队列,使用一个生产者单线程发送数据,消费者端也使用单线程进行消费,从而保证消息的全局有序,但是这种方式效率低,一般不使用 ...
- 「codeforces - 185D」Visit of the Great
link. 简单提一下做法,注意到 \(k^{2^a}\equiv k^{2^b}\equiv-1\equiv (-1)^{2^{b-a}}=1\pmod{(k^{2^a}+1,k^{2^{b}}+1 ...
- 千呼万唤始出来 JDK 21 LTS, 久等了
平地起惊雷!!! 目录 英雄的迟暮 大人时代变了 JDK 21 LTS 前 JAVA并发编程模型 JDK 21 LTS 中的 JAVA 并发编程模型 虚拟线程 VS 线程池 The Last 你可以称 ...