摘要:本篇文章将从一个实际项目出发,分享如何使用 Spark 进行大规模日志分析,并通过代码演示加深读者的理解。

本文分享自华为云社区《【实战经验分享】基于Spark的大规模日志分析【上进小菜猪大数据系列】》,作者:上进小菜猪。

随着互联网的普及和应用范围的扩大,越来越多的应用场景需要对海量数据进行高效地处理和分析,这就要求我们必须具备大数据技术方面的知识和技能。本篇文章将从一个实际项目出发,分享如何使用 Spark 进行大规模日志分析,并通过代码演示加深读者的理解。

1.数据来源

我们的项目是针对某购物网站的访问日志进行分析,其中主要包含以下几个字段:

  • IP:访问的客户端 IP 地址
  • Time:访问时间
  • Url:访问的 URL 地址
  • User-Agent:浏览器标识符

原始数据规模约为 100GB,我们需要对其进行清洗、统计和分析,以得到有用的信息和价值。

2. 数据清洗

由于原始数据存在缺失值、异常值、重复值等问题,因此我们需要进行数据清洗,主要包括以下步骤:

  1. 将原始数据进行格式转换,方便后续处理
  2. 对 IP、Time、Url 和 User-Agent 字段进行解析和提取
  3. 去除不合法的记录和重复的记录

具体代码实现如下:

import org.apache.spark.{SparkConf, SparkContext}
import java.text.SimpleDateFormat
import java.util.Locale

object DataCleaning {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("DataCleaning")
val sc = new SparkContext(conf)
val data = sc.textFile("hdfs://master:9000/log/access.log")

// 定义时间格式及地区信息
val dateFormat = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss Z", Locale.ENGLISH)

// 数据清洗
val cleanData = data.map(line => {
val arr = line.split(" ")
if (arr.length >= 9) {
// 解析 IP
val ip = arr(0)

// 解析时间,转换为 Unix 时间戳
val time = dateFormat.parse(arr(3) + " " + arr(4)).getTime / 1000

// 解析 URL
val url = urlDecode(arr(6))

// 解析 UserAgent
val ua = arr(8)

(ip, time, url, ua)
}
}).filter(x => x != null).distinct()

// 结果输出
cleanData.saveAsTextFile("hdfs://master:9000/cleanData")

sc.stop()
}

// URL 解码
def urlDecode(url: String): String = {
java.net.URLDecoder.decode(url, "utf-8")
}
}

3. 数据统计

对于大规模数据的处理,我们可以使用 Spark 提供的强大的分布式计算能力,以提高处理效率和减少计算时间。

我们这里使用 Spark SQL 统计每个 URL 的访问量,并输出前 10 个访问量最高的 URL,代码如下:

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext

case class LogRecord(ip: String, time: Long, url: String, ua: String)

object DataAnalysis {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("DataAnalysis")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)

// 读取清洗后的数据
val cleanData = sc.textFile("hdfs://master:9000/cleanData").filter(x => x != null)

// 将数据转换为 DataFrame
import sqlContext.implicits._
val logDF = cleanData.map(_.split(",")).map(p => LogRecord(p(0), p(1).toLong, p(2), p(3))).toDF()

// 统计每个 URL 的访问量,并按访问量降序排序
val topUrls = logDF.groupBy("url").count().sort($"count".desc)

// 输出前 10 个访问量最高的 URL
topUrls.take(10).foreach(println)

sc.stop()
}
}

4. 数据可视化

数据可视化是将处理和分析后的数据以图表或图像的方式展示出来,有利于我们直观地观察数据的规律和趋势。

我们这里采用 Python 的 Matplotlib 库将前 10 个访问量最高的 URL 可视化,代码如下:

import matplotlib.pyplot as plt

# 读取数据
with open('topUrls.txt', 'r') as f:
line = f.readline()
urls = []
counts = []
while line and len(urls) < 10:
url, count = line.strip().split(',')
urls.append(url)
counts.append(int(count))
line = f.readline()
# 绘制直方图
plt.bar(range(10), counts, align='center')
plt.xticks(range(10), urls, rotation=90)
plt.xlabel('Url')
plt.ylabel('Count')
plt.title('Top 10 Url')
plt.show()

在进行数据清洗前,需要先对原始日志数据进行筛选,选取需要分析的字段。然后进行数据清洗,去掉不必要的空格、特殊字符等,使数据更加规整,并增加可读性。

下面是数据清洗的代码示例:

val originalRdd = spark.sparkContext.textFile("path/to/logfile")

val filteredRdd = originalRdd.filter(line => {
val tokens = line.split("\t")
tokens.length >= 10 &&
tokens(0).matches("\d{4}-\d{2}-\d{2}") &&
tokens(1).matches("\d{2}:\d{2}:\d{2}") &&
tokens(2).matches("\d+") &&
tokens(3).matches("\d+") &&
tokens(4).matches("\d+") &&
tokens(5).matches("\d+") &&
tokens(6).matches(".+") &&
tokens(7).matches(".+") &&
tokens(8).matches(".+") &&
tokens(9).matches(".+")
})

val cleanedRdd = filteredRdd.map(line => {
val tokens = line.split("\t")
val timestamp = s"${tokens(0)} ${tokens(1)}"
val request = tokens(6).replaceAll(""", "")
val responseCode = tokens(8).toInt
(timestamp, request, responseCode)
})

​在上述代码中,我们首先读取原始日志数据,并使用filter函数过滤掉不符合条件的行;然后使用map函数将数据转换为元组的形式,并进行清洗。其中,元组的三个元素分别是时间戳、请求内容和响应状态码。

接下来,让我们来介绍一下如何使用Spark进行数据统计。

数据统计是大规模数据分析中非常重要的一个环节。Spark提供了丰富的聚合函数,可用于对数据进行各种统计分析。

下面是对清洗后的数据进行统计分析的代码示例:

import org.apache.spark.sql.functions._

val df = spark.createDataFrame(cleanedRdd).toDF("timestamp", "request", "responseCode")
val totalCount = df.count()
val errorsCount = df.filter(col("responseCode") >= 400).count()
val successCount = totalCount - errorsCount
val topEndpoints = df.groupBy("request").count().orderBy(desc("count")).limit(10)
topEndpoints.show()

在上面的代码中,我们首先将清洗后的数据转换为DataFrame,然后使用count函数计算总记录数和错误记录数,并计算成功记录数。最后使用groupBy和orderBy函数按照请求内容,对数据进行分组统计,并打印出请求次数最多的前10个端点。

通过可视化,我们可以清楚地看到前 10 个访问量最高的 URL 地址及其访问量,这对于进一步分析和优化网站的性能和用户体验具有重要的意义。

总结起来,这就是我们的一个大数据实战项目,我们使用 Spark 统计了购物网站的访问量,并通过 Python 的 Matplotlib 库将结果可视化。这个过程中,我们运用了数据清洗、Spark SQL 统计和可视化等技术,为大规模数据的处理和分析提供了有效的解决方案。

点击关注,第一时间了解华为云新鲜技术~

基于Spark的大规模日志分析的更多相关文章

  1. 基于Spark的网站日志分析

    本文只展示核心代码,完整代码见文末链接. Web Log Analysis 提取需要的log信息,包括time, traffic, ip, web address 进一步解析第一步获得的log信息,如 ...

  2. 基于 Spark 的文本情感分析

    转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.ht ...

  3. 使用Spark进行搜狗日志分析实例——map join的使用

    map join相对reduce join来说,可以减少在shuff阶段的网络传输,从而提高效率,所以大表与小表关联时,尽量将小表数据先用广播变量导入内存,后面各个executor都可以直接使用 pa ...

  4. 使用Spark进行搜狗日志分析实例——统计每个小时的搜索量

    package sogolog import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* ...

  5. spark提交异常日志分析

    java.lang.NoSuchMethodError: org.apache.spark.sql.SQLContext.sql(Ljava/lang/String;)Lorg/apache/spar ...

  6. 使用Spark进行搜狗日志分析实例——列出搜索不同关键词超过10个的用户及其搜索的关键词

    package sogolog import org.apache.hadoop.io.{LongWritable, Text} import org.apache.hadoop.mapred.Tex ...

  7. 基于Spark的均值漂移算法在网络舆情聚类中的应用

    知网链接 原文链接 张京坤,  王怡怡 软件导刊   2020年19卷第9期 页码:190-195 DOI:10.11907/rjdk.192529 出版日期:2020-9-15 摘 要: 为了改善网 ...

  8. Linux 日志分析工具之awstats

    一.awstats 是什么 官方网站:AWStats is a free powerful and featureful tool that generates advanced web, strea ...

  9. MySQL 数据库慢查询日志分析脚本

    这个脚本是基于pt-query-digest做的日志分析脚本,变成可视化的格式. 目录结构是 ./mysql_data/log./mysql_data/log/tmp./slow_query # co ...

  10. 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用

    https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...

随机推荐

  1. NLP 开源形近字算法之相似字列表(番外篇)

    创作目的 国内对于文本的相似度计算,开源的工具是比较丰富的. 但是对于两个汉字之间的相似度计算,国内基本一片空白.国内的参考的资料少的可怜,国外相关文档也是如此. 本项目旨在抛砖引玉,实现一个基本的相 ...

  2. 一文总结你需要的OpenCV操作

    目录 一.OpenCV简介 1.1 OpenCV是什么 1.2 安装及使用 二.图像的基础 2.1 成像原理 2.2 图像格式 2.3 颜色空间 三.OpenCV基础操作 3.1 图像的读取.显示.保 ...

  3. Apache Hudi 0.9.0版本重磅发布!更强大的流式数据湖平台

    1. 重点特性 1.1 Spark SQL支持 0.9.0 添加了对使用 Spark SQL 的 DDL/DML 的支持,朝着使所有角色(非工程师.分析师等)更容易访问和操作 Hudi 迈出了一大步. ...

  4. FreeSWITCH的originate命令解析及示例

    FreeSWITCH版本:1.10.9 操作系统:CentOS 7.6.1810 originate经常用于发起呼叫,在实际工作过程中用到的也比较多,今天总结下基本用法,也方便我以后查阅. 一.wik ...

  5. C#泛型的逆变协变(个人理解)

    前编 一般来说, 泛型的作用就类似一个占位符, 或者说是一个参数, 可以让我们把类型像参数一样进行传递, 尽可能地复用代码 我有个朋友, 在使用的过程中发现一个问题 IFace<object&g ...

  6. yaml-cpp YAML格式处理库的介绍和使用(面向业务编程-文件格式处理)

    yaml-cpp YAML格式处理库的介绍和使用(面向业务编程-文件格式处理) YAML格式介绍 YAML的格式介绍,有关ini.json和xml或许很多人已经很了解了,但是关于YAML,还有许多人不 ...

  7. SQL语句的其他关键字

    目录 数据准备 编写SQL语句小技巧 查询关键字之where筛选 查询关键字之group by 分组 查询关键字之having过滤 查询关键字之distinct去重 查询关键字之order by排序 ...

  8. Linux中如何通过yum或者apt下载安装MySQL

    一.   yum mysql5.7以下 mysql5.7以上 Centos8 可以,但是需要重新配置文件 可以,但是需要重新配置文件 可以,但是需要重新配置文件 Centos7 可以直接yum,但是是 ...

  9. php正则表达式大全/php正则表达式使用方法整理集合

    匹配数字 "^\d+$" //非负整数(正整数 + 0) "[1][1-9][0-9]$" //正整数 "^((-\d+)|(0+))$" ...

  10. PaddlePaddle-快速入门

    PaddlePaddle-快速入门 终于进入到新手入门第四课啦~在最后一门课中我会给大家讲解如何快速入门PaddlePaddle,并让大家跑通一个小demo来熟悉PaddlePaddle的基本命令. ...