题面传送门

一道码农题…………

u1s1 感觉这类题目都挺套路的,就挑个有代表性的题写一篇题解罢。

首先注意到答案满足可二分性,故考虑二分答案 \(mid\),转化为判定性问题。

考虑怎样检验 \(mid\) 是否可行,它等价于是否存在 \(s[a...b]\) 中的一个子串 \(t\) 满足 \(s[c...c+mid-1]\) 为 \(t\) 的前缀。不过不难发现这个“前缀”是假的,因为 \(\forall a\le l\le r\le b\),\(s[l...r]\) 的任意一个前缀都是 \(s[a...b]\) 的子串,故只需检验 \(s[c...c+mid-1]\) 是否为 \(s[a...b]\) 的子串。而根据 LCP Lemma 的知识可知这个东西又可以转化为 \(\exist x\in[a,b-mid+1]\) 使得 \(\text{LCP}(x,c)\geq mid\)。

很明显满足 \(\text{LCP}(x,c)\geq mid\) 的 \(x\) 在字典序上一定是一段连续的区间 \([L,R]\),这个区间可以通过二分+ST 表求出,因此 \(\exist x\in[a,b-mid+1],\text{LCP}(x,c)\ge mid\Leftrightarrow\exist i\in[L,R],sa_i\in[a,b-mid+1]\)。考虑以后缀编号为下标建立主席树,第 \(i\) 棵树上 \([l,r]\) 的区间中表示在字典序前 \(i\) 的后缀中有多少个属于区间 \([l,r]\),然后在编号 \(R,L-1\) 为下标的两棵主席树上查询下标为 \([a,b-mid+1]\) 中的数之和并相减,判断是否 \(>0\) 即可。

时间复杂度 \(\mathcal O(n\log^2n)\)。常数巨大……

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=2e5;
const int MAXP=MAXN*40;
const int LOG_N=18;
int n,qu;char s[MAXN+5];pii x[MAXN+5];
int sa[MAXN+5],rk[MAXN+5],buc[MAXN+5],seq[MAXN+5],ht[MAXN+5];
int st[MAXN+5][LOG_N+2];
void getsa(){
int vmax=122,gr=0;
for(int i=1;i<=n;i++) buc[s[i]]++;
for(int i=1;i<=vmax;i++) buc[i]+=buc[i-1];
for(int i=n;i;i--) sa[buc[s[i]]--]=i;
for(int i=1;i<=n;i++){
if(s[sa[i]]!=s[sa[i-1]]) gr++;
rk[sa[i]]=gr;
} vmax=gr;
for(int k=1;k<=n;k<<=1){
for(int i=1;i<=n;i++){
if(i+k<=n) x[i]=mp(rk[i],rk[i+k]);
else x[i]=mp(rk[i],0);
} memset(buc,0,sizeof(buc));gr=0;int num=0;
for(int i=n-k+1;i<=n;i++) seq[++num]=i;
for(int i=1;i<=n;i++) if(sa[i]>k) seq[++num]=sa[i]-k;
for(int i=1;i<=n;i++) buc[x[i].fi]++;
for(int i=1;i<=vmax;i++) buc[i]+=buc[i-1];
for(int i=n;i;i--) sa[buc[x[seq[i]].fi]--]=seq[i];
for(int i=1;i<=n;i++){
if(x[sa[i]]!=x[sa[i-1]]) gr++;
rk[sa[i]]=gr;
} vmax=gr;if(vmax==n) break;
}
}
void getht(){
int k=0;
for(int i=1;i<=n;i++){
if(rk[i]==1) continue;if(k) k--;
int j=sa[rk[i]-1];
while(i+k<=n&&j+k<=n&&s[i+k]==s[j+k]) k++;
ht[rk[i]]=k;
}
}
void buildst(){
for(int i=1;i<=n;i++) st[i][0]=ht[i];
for(int i=1;i<=LOG_N;i++) for(int j=1;j+(1<<i)-1<=n;j++)
st[j][i]=min(st[j][i-1],st[j+(1<<i-1)][i-1]);
}
int query(int l,int r){
// printf("%d %d\n",l,r);
int k=log2(r-l+1);
return min(st[l][k],st[r-(1<<k)+1][k]);
}
namespace segtree{
struct node{int ch[2],val;} s[MAXP+5];
int ncnt,rt[MAXN+5];
void build(int &k,int l,int r){
k=++ncnt;if(l==r) return;int mid=l+r>>1;
build(s[k].ch[0],l,mid);build(s[k].ch[1],mid+1,r);
}
int modify(int k,int l,int r,int p,int x){
int z=++ncnt;s[z]=s[k];s[z].val+=x;
if(l==r) return z;
int mid=l+r>>1;
if(p<=mid) s[z].ch[0]=modify(s[k].ch[0],l,mid,p,x);
else s[z].ch[1]=modify(s[k].ch[1],mid+1,r,p,x);
return z;
}
int query(int k,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr) return s[k].val;
int mid=(l+r)>>1;
if(qr<=mid) return query(s[k].ch[0],l,mid,ql,qr);
else if(ql>mid) return query(s[k].ch[1],mid+1,r,ql,qr);
else return query(s[k].ch[0],l,mid,ql,mid)+query(s[k].ch[1],mid+1,r,mid+1,qr);
}
}
using segtree::rt;
using segtree::modify;
using segtree::build;
bool check(int x,int a,int b,int c){
b=b-x+1;
int L=1,R=rk[c]-1,mid,l=rk[c],r=rk[c];
while(L<=R) (query((mid=L+R>>1)+1,rk[c])>=x)?l=mid,R=mid-1:L=mid+1;
L=rk[c]+1,R=n;
while(L<=R) (query(rk[c]+1,mid=L+R>>1)>=x)?r=mid,L=mid+1:R=mid-1;
// printf("%d %d %d %d %d\n",c,x,l,r,segtree::query(rt[r],1,n,a,b)-segtree::query(rt[l-1],1,n,a,b));
return segtree::query(rt[r],1,n,a,b)-segtree::query(rt[l-1],1,n,a,b);
}
int main(){
scanf("%d%d%s",&n,&qu,s+1);
getsa();getht();buildst();build(rt[0],1,n);
// printf("%d\n",query(8,9));
// for(int i=1;i<=n;i++) printf("%d\n",sa[i]);
for(int i=1;i<=n;i++) rt[i]=modify(rt[i-1],1,n,sa[i],1);
while(qu--){
int a,b,c,d;scanf("%d%d%d%d",&a,&b,&c,&d);
int l=0,r=min(b-a+1,d-c+1),mid,x=0;
while(l<=r) check(mid=l+r>>1,a,b,c)?x=mid,l=mid+1:r=mid-1;
printf("%d\n",x);
}
return 0;
}
/*
13 1
ababbabbbaaab
2 4 8 10
*/

洛谷 P4094 [HEOI2016/TJOI2016]字符串(SA+主席树)的更多相关文章

  1. 洛谷P2824 [HEOI2016/TJOI2016]排序(线段树)

    传送门 这题的思路好清奇 因为只有一次查询,我们考虑二分这个值为多少 将原序列转化为一个$01$序列,如果原序列上的值大于$mid$则为$1$否则为$0$ 那么排序就可以用线段树优化,设该区间内$1$ ...

  2. 洛谷 P2824 [HEOI2016/TJOI2016]排序 (线段树合并)

    (另外:题解中有一种思路很高妙而且看上去可以适用一些其他情况的离线方法) 线段树合并&复杂度的简单说明:https://blog.csdn.net/zawedx/article/details ...

  3. 洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP

    洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会 ...

  4. P4094 [HEOI2016/TJOI2016]字符串 后缀数组+主席树+二分答案

    $ \color{#0066ff}{ 题目描述 }$ 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须 ...

  5. BZOJ4553/洛谷P4093 [HEOI2016/TJOI2016]序列 动态规划 分治

    原文链接http://www.cnblogs.com/zhouzhendong/p/8672434.html 题目传送门 - BZOJ4553 题目传送门 - 洛谷P4093 题解 设$Li$表示第$ ...

  6. 洛谷 P4091 [HEOI2016/TJOI2016]求和 解题报告

    P4091 [HEOI2016/TJOI2016]求和 题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: \[ f(n)=\sum_{i=0}^n\ ...

  7. 洛谷 P4093 [HEOI2016/TJOI2016]序列 解题报告

    P4093 [HEOI2016/TJOI2016]序列 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一 ...

  8. 洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告

    P2824 [HEOI2016/TJOI2016]排序 题意: 有一个长度为\(n\)的1-n的排列\(m\)次操作 \((0,l,r)\)表示序列从\(l\)到\(r\)降序 \((1,l,r)\) ...

  9. BZOJ4556 HEOI2016/TJOI2016字符串 (后缀树+主席树)

    二分答案后相当于判断一个区间的后缀与某个后缀的最长公共前缀是否能>=ans.建出后缀树,在上述问题中后者所在节点向上倍增的跳至len>=ans的最高点,然后相当于查询子树中是否有该区间的节 ...

随机推荐

  1. JSP(java server pages)安装开发和执行环境

    JSP是一种动态网页技术标准. 它是在传统的网页HTML文件中插入Java程序段(Scriptlet)和JSP标记(tag)的.jsp文件: java程序段:操纵数据库,重新定向网页,发送email等 ...

  2. [技术博客]在团队中使用Pull Request来管理代码

    在团队中使用Pull Request来管理代码 前言 在参加多人共同开发项目,且选用Git作为代码托管工具的时候,我们不免会遇到分支冲突.覆盖.合并等问题.显然,因为同一个仓库是属于大家的,所以每个人 ...

  3. camera HSYNC:VSYNC

    HSYNC:行锁存,换行信号VSYNC:祯锁存,换页信号 320×240的屏,每一行需要输入320个脉冲来依次移位.锁存进一行的数据,然后来个HSYNC 脉冲换一行:这样依次输入240行之后换行同时来 ...

  4. Java代理:静态代理、JDK动态代理和CGLIB动态代理

    代理模式(英语:Proxy Pattern)是程序设计中的一种设计模式.所谓的代理者是指一个类别可以作为其它东西的接口.代理者可以作任何东西的接口:网络连接.存储器中的大对象.文件或其它昂贵或无法复制 ...

  5. Vulnhub实战-dr4g0n b4ll靶机👻

    Vulnhub实战-dr4g0n b4ll靶机 地址:http://www.vulnhub.com/entry/dr4g0n-b4ll-1,646/ 描述:这篇其实没有什么新奇的技巧,用到的提权方式就 ...

  6. 聊了聊宏内核和微内核,并吹了一波 Linux

    看这里!!!https://mp.weixin.qq.com/s?__biz=MzI0ODk2NDIyMQ==&mid=2247494048&idx=1&sn=cacfc6a4 ...

  7. linux 关于 环境变量

    有关环境变量的文件 系统级环境变量:每一个登录到系统的用户都能够读取到系统级的环境变量       用户级环境变量:每一个登录到系统的用户只能够读取属于自己的用户级的环境变量  文件加载顺序: ==& ...

  8. Linux 启动/关闭 oracle 数据库

    1.启动 1.1 启动监听 :lsnrctl start 1.2 启动数据库:sqlplus /nolog    conn /as sysdba(或者两句一起:sqlplus sys/ as sysd ...

  9. PyCharm Django Python 开发环境配置 详细教程

    PyCharm Django Python 开发环境配置 详细教程 1. Python 下载及安装 (1)根据需要的版本去 Python 官网(https://www.python.org/downl ...

  10. let that = this用法解析

    这种情况就是在一个代码片段里this有可能代表不同的对象,而编码者希望this代表最初的对象