洛谷 P4094 [HEOI2016/TJOI2016]字符串(SA+主席树)
一道码农题…………
u1s1 感觉这类题目都挺套路的,就挑个有代表性的题写一篇题解罢。
首先注意到答案满足可二分性,故考虑二分答案 \(mid\),转化为判定性问题。
考虑怎样检验 \(mid\) 是否可行,它等价于是否存在 \(s[a...b]\) 中的一个子串 \(t\) 满足 \(s[c...c+mid-1]\) 为 \(t\) 的前缀。不过不难发现这个“前缀”是假的,因为 \(\forall a\le l\le r\le b\),\(s[l...r]\) 的任意一个前缀都是 \(s[a...b]\) 的子串,故只需检验 \(s[c...c+mid-1]\) 是否为 \(s[a...b]\) 的子串。而根据 LCP Lemma 的知识可知这个东西又可以转化为 \(\exist x\in[a,b-mid+1]\) 使得 \(\text{LCP}(x,c)\geq mid\)。
很明显满足 \(\text{LCP}(x,c)\geq mid\) 的 \(x\) 在字典序上一定是一段连续的区间 \([L,R]\),这个区间可以通过二分+ST 表求出,因此 \(\exist x\in[a,b-mid+1],\text{LCP}(x,c)\ge mid\Leftrightarrow\exist i\in[L,R],sa_i\in[a,b-mid+1]\)。考虑以后缀编号为下标建立主席树,第 \(i\) 棵树上 \([l,r]\) 的区间中表示在字典序前 \(i\) 的后缀中有多少个属于区间 \([l,r]\),然后在编号 \(R,L-1\) 为下标的两棵主席树上查询下标为 \([a,b-mid+1]\) 中的数之和并相减,判断是否 \(>0\) 即可。
时间复杂度 \(\mathcal O(n\log^2n)\)。常数巨大……
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=2e5;
const int MAXP=MAXN*40;
const int LOG_N=18;
int n,qu;char s[MAXN+5];pii x[MAXN+5];
int sa[MAXN+5],rk[MAXN+5],buc[MAXN+5],seq[MAXN+5],ht[MAXN+5];
int st[MAXN+5][LOG_N+2];
void getsa(){
int vmax=122,gr=0;
for(int i=1;i<=n;i++) buc[s[i]]++;
for(int i=1;i<=vmax;i++) buc[i]+=buc[i-1];
for(int i=n;i;i--) sa[buc[s[i]]--]=i;
for(int i=1;i<=n;i++){
if(s[sa[i]]!=s[sa[i-1]]) gr++;
rk[sa[i]]=gr;
} vmax=gr;
for(int k=1;k<=n;k<<=1){
for(int i=1;i<=n;i++){
if(i+k<=n) x[i]=mp(rk[i],rk[i+k]);
else x[i]=mp(rk[i],0);
} memset(buc,0,sizeof(buc));gr=0;int num=0;
for(int i=n-k+1;i<=n;i++) seq[++num]=i;
for(int i=1;i<=n;i++) if(sa[i]>k) seq[++num]=sa[i]-k;
for(int i=1;i<=n;i++) buc[x[i].fi]++;
for(int i=1;i<=vmax;i++) buc[i]+=buc[i-1];
for(int i=n;i;i--) sa[buc[x[seq[i]].fi]--]=seq[i];
for(int i=1;i<=n;i++){
if(x[sa[i]]!=x[sa[i-1]]) gr++;
rk[sa[i]]=gr;
} vmax=gr;if(vmax==n) break;
}
}
void getht(){
int k=0;
for(int i=1;i<=n;i++){
if(rk[i]==1) continue;if(k) k--;
int j=sa[rk[i]-1];
while(i+k<=n&&j+k<=n&&s[i+k]==s[j+k]) k++;
ht[rk[i]]=k;
}
}
void buildst(){
for(int i=1;i<=n;i++) st[i][0]=ht[i];
for(int i=1;i<=LOG_N;i++) for(int j=1;j+(1<<i)-1<=n;j++)
st[j][i]=min(st[j][i-1],st[j+(1<<i-1)][i-1]);
}
int query(int l,int r){
// printf("%d %d\n",l,r);
int k=log2(r-l+1);
return min(st[l][k],st[r-(1<<k)+1][k]);
}
namespace segtree{
struct node{int ch[2],val;} s[MAXP+5];
int ncnt,rt[MAXN+5];
void build(int &k,int l,int r){
k=++ncnt;if(l==r) return;int mid=l+r>>1;
build(s[k].ch[0],l,mid);build(s[k].ch[1],mid+1,r);
}
int modify(int k,int l,int r,int p,int x){
int z=++ncnt;s[z]=s[k];s[z].val+=x;
if(l==r) return z;
int mid=l+r>>1;
if(p<=mid) s[z].ch[0]=modify(s[k].ch[0],l,mid,p,x);
else s[z].ch[1]=modify(s[k].ch[1],mid+1,r,p,x);
return z;
}
int query(int k,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr) return s[k].val;
int mid=(l+r)>>1;
if(qr<=mid) return query(s[k].ch[0],l,mid,ql,qr);
else if(ql>mid) return query(s[k].ch[1],mid+1,r,ql,qr);
else return query(s[k].ch[0],l,mid,ql,mid)+query(s[k].ch[1],mid+1,r,mid+1,qr);
}
}
using segtree::rt;
using segtree::modify;
using segtree::build;
bool check(int x,int a,int b,int c){
b=b-x+1;
int L=1,R=rk[c]-1,mid,l=rk[c],r=rk[c];
while(L<=R) (query((mid=L+R>>1)+1,rk[c])>=x)?l=mid,R=mid-1:L=mid+1;
L=rk[c]+1,R=n;
while(L<=R) (query(rk[c]+1,mid=L+R>>1)>=x)?r=mid,L=mid+1:R=mid-1;
// printf("%d %d %d %d %d\n",c,x,l,r,segtree::query(rt[r],1,n,a,b)-segtree::query(rt[l-1],1,n,a,b));
return segtree::query(rt[r],1,n,a,b)-segtree::query(rt[l-1],1,n,a,b);
}
int main(){
scanf("%d%d%s",&n,&qu,s+1);
getsa();getht();buildst();build(rt[0],1,n);
// printf("%d\n",query(8,9));
// for(int i=1;i<=n;i++) printf("%d\n",sa[i]);
for(int i=1;i<=n;i++) rt[i]=modify(rt[i-1],1,n,sa[i],1);
while(qu--){
int a,b,c,d;scanf("%d%d%d%d",&a,&b,&c,&d);
int l=0,r=min(b-a+1,d-c+1),mid,x=0;
while(l<=r) check(mid=l+r>>1,a,b,c)?x=mid,l=mid+1:r=mid-1;
printf("%d\n",x);
}
return 0;
}
/*
13 1
ababbabbbaaab
2 4 8 10
*/
洛谷 P4094 [HEOI2016/TJOI2016]字符串(SA+主席树)的更多相关文章
- 洛谷P2824 [HEOI2016/TJOI2016]排序(线段树)
传送门 这题的思路好清奇 因为只有一次查询,我们考虑二分这个值为多少 将原序列转化为一个$01$序列,如果原序列上的值大于$mid$则为$1$否则为$0$ 那么排序就可以用线段树优化,设该区间内$1$ ...
- 洛谷 P2824 [HEOI2016/TJOI2016]排序 (线段树合并)
(另外:题解中有一种思路很高妙而且看上去可以适用一些其他情况的离线方法) 线段树合并&复杂度的简单说明:https://blog.csdn.net/zawedx/article/details ...
- 洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP
洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会 ...
- P4094 [HEOI2016/TJOI2016]字符串 后缀数组+主席树+二分答案
$ \color{#0066ff}{ 题目描述 }$ 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须 ...
- BZOJ4553/洛谷P4093 [HEOI2016/TJOI2016]序列 动态规划 分治
原文链接http://www.cnblogs.com/zhouzhendong/p/8672434.html 题目传送门 - BZOJ4553 题目传送门 - 洛谷P4093 题解 设$Li$表示第$ ...
- 洛谷 P4091 [HEOI2016/TJOI2016]求和 解题报告
P4091 [HEOI2016/TJOI2016]求和 题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: \[ f(n)=\sum_{i=0}^n\ ...
- 洛谷 P4093 [HEOI2016/TJOI2016]序列 解题报告
P4093 [HEOI2016/TJOI2016]序列 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一 ...
- 洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告
P2824 [HEOI2016/TJOI2016]排序 题意: 有一个长度为\(n\)的1-n的排列\(m\)次操作 \((0,l,r)\)表示序列从\(l\)到\(r\)降序 \((1,l,r)\) ...
- BZOJ4556 HEOI2016/TJOI2016字符串 (后缀树+主席树)
二分答案后相当于判断一个区间的后缀与某个后缀的最长公共前缀是否能>=ans.建出后缀树,在上述问题中后者所在节点向上倍增的跳至len>=ans的最高点,然后相当于查询子树中是否有该区间的节 ...
随机推荐
- javascript-原生-面向对象
1.javascript面向对象程序设计 概述:javascript不想其他面向对象编程语言那样有类的概念,javascript没有类(构造函数)的概念,只有对象的概念. 2.理解javascript ...
- MySQL:基础语法-1
MySQL:基础语法-1 记录一下 MySQL 基础的一些语法,便于查询,该部分内容主要是参考:bilibili 上 黑马程序员 的课程而做的笔记,由于时间有点久了,课程地址忘记了 关于数据库的安装操 ...
- hystrix的配置说明
在我们的日常开发中,有些时候需要和第三方系统进行对接操作,或者调用其他系统的 api 接口,但是我们不能保证这些第三方系统的接口一定是稳定的,当系统中产生大量的流量来访问这些第三方接口,这些第三方系统 ...
- PCB电路板元器件布局的一般原则*(转)
PCB电路板元器件布局的一般原则: 设计人员在PCB电路板布局过程中需要遵循的一般原则如下. (1)元器件最好单面放置.如果需要双面放置元器件,在底层(Bottom Layer)放置插针式元器件, ) ...
- 双堆DEAP
记录一道遇到的考研真题 特性分析: DEAP为一颗完全二叉树,左子树小堆,右子树大堆,故左右子树分别可以用l[].r[]数组存储,用m和n分别表示当前两完全二叉树的结点,左右子树高度差为1,且左子树的 ...
- cf12E Start of the season(构造,,,)
题意: 给一个偶数N. 构造出一个矩阵. 满足:主对角线上全为0.每一行是0~N-1的一个全排列.矩阵关于主对角线对称. 思路: 觉得是智商题,,,,看完题解后觉得不难,但是我就是没想出来.只想到了前 ...
- PWN学习之格式化字符串漏洞
目录 PWN学习之格式化字符串漏洞 格式化输出函数 格式化字符串漏洞 漏洞利用 使程序崩溃 栈数据泄露 任意地址内存泄漏 栈数据覆盖 任意地址内存覆盖 PWN学习之格式化字符串漏洞 格式化输出函数 可 ...
- 『与善仁』Appium基础 — 5、常用ADB命令(二)
目录 9.查看手机运行日志 (1)Android 日志 (2)按级别过滤日志 (3)按 tag 和级别过滤日志 (4)日志格式 (5)清空日志 10.获取APP的包名和启动名 方式一: 方式二: 11 ...
- jmeter 数据库压力测试之MySql
1.首先下载合适的数据库驱动:https://mvnrepository.com/artifact/mysql/mysql-connector-java 2.创建testplan,并添加jar包 3. ...
- JavaScript 简单介绍
一.简介 JavaScript是一门面向对象的动态语言,他一般用来处理以下任务: 修饰网页 生成HTML和CSS 生成动态HTML内容 生成一些特效 提供用户交互接口 生成用户交互组件 验证用户输入 ...