CodeForces979D:Kuro and GCD and XOR and SUM(Trie树&指针&Xor)
Kuro is currently playing an educational game about numbers. The game focuses on the greatest common divisor (GCD), the XOR value, and the sum of two numbers. Kuro loves the game so much that he solves levels by levels day by day.
Sadly, he's going on a vacation for a day, and he isn't able to continue his solving streak on his own. As Katie is a reliable person, Kuro kindly asked her to come to his house on this day to play the game for him.
Initally, there is an empty array aa. The game consists of qq tasks of two types. The first type asks Katie to add a number uiui to aa. The second type asks Katie to find a number vv existing in aa such that ki∣GCD(xi,v)ki∣GCD(xi,v), xi+v≤sixi+v≤si, and xi⊕vxi⊕v is maximized, where ⊕⊕ denotes the bitwise XOR operation, GCD(c,d)GCD(c,d) denotes the greatest common divisor of integers cc and dd, and y∣xy∣x means xx is divisible by yy, or report -1 if no such numbers are found.
Since you are a programmer, Katie needs you to automatically and accurately perform the tasks in the game to satisfy her dear friend Kuro. Let's help her!
Input
The first line contains one integer qq (2≤q≤1052≤q≤105) — the number of tasks the game wants you to perform.
qq lines follow, each line begins with an integer titi — the type of the task:
- If ti=1ti=1, an integer uiui follow (1≤ui≤1051≤ui≤105) — you have to add uiui to the array aa.
- If ti=2ti=2, three integers xixi, kiki, and sisi follow (1≤xi,ki,si≤1051≤xi,ki,si≤105) — you must find a number vv existing in the array aa such that ki∣GCD(xi,v)ki∣GCD(xi,v), xi+v≤sixi+v≤si, and xi⊕vxi⊕v is maximized, where ⊕⊕ denotes the XOR operation, or report -1 if no such numbers are found.
It is guaranteed that the type of the first task is type 11, and there exists at least one task of type 22.
Output
For each task of type 22, output on one line the desired number vv, or -1 if no such numbers are found.
Examples
5
1 1
1 2
2 1 1 3
2 1 1 2
2 1 1 1
2
1
-1
10
1 9
2 9 9 22
2 3 3 18
1 25
2 9 9 20
2 25 25 14
1 20
2 26 26 3
1 14
2 20 20 9
9
9
9
-1
-1
-1
Note
In the first example, there are 5 tasks:
- The first task requires you to add 11 into aa. aa is now {1}{1}.
- The second task requires you to add 22 into aa. aa is now {1,2}{1,2}.
- The third task asks you a question with x=1x=1, k=1k=1 and s=3s=3. Taking both 11and 22 as vv satisfies 1∣GCD(1,v)1∣GCD(1,v) and 1+v≤31+v≤3. Because 2⊕1=3>1⊕1=02⊕1=3>1⊕1=0, 22is the answer to this task.
- The fourth task asks you a question with x=1x=1, k=1k=1 and s=2s=2. Only v=1v=1satisfies 1∣GCD(1,v)1∣GCD(1,v) and 1+v≤21+v≤2, so 11 is the answer to this task.
- The fifth task asks you a question with x=1x=1, k=1k=1 and s=1s=1. There are no elements in aa that satisfy the conditions, so we report -1 as the answer to this task.
题意:开始有个空数组,现在有两种操作:
(1,x):给数组加一个数a[]=x;
(2,x,k,s):在k|x的情况下,在数组中找一个a[i],满足a[i]<=s-x,而且k|a[i];现在需要找满足条件的a[],它异或x的值最大。
思路:最大异或,想到Trie树,树上可以贪心地走和x不相同的方向,使得异或最大,而且树上不难满足a[i]<=s-x的条件。
主要问题在于如何满足a[i]是k的倍数。如果操作1,假如a[i],把a[i]的每个的因子都走一遍Trie树,YY一下感觉复杂度很高,所以不敢写,而且不会用指针,空间是肯定要爆炸的。 然而标解就是如此:
时间上:O=1e5*lg1e5*18=2*1e7;ok!
空间上:和时间复杂度差不多大。
(不会写指针,所以比赛的时候只有暴力Trie写了发回溯来满足a[i]是k的倍数。。。第一次写指针,感觉可以入门了!奶思!
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
vector<int>G[maxn];
int vis[maxn];
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=getchar();
}
struct Trie
{
struct node
{
int Min,val;
node *ch[];
node(){
Min=maxn;
ch[]=ch[]=NULL;
}
}*rt[maxn];
void init()
{
for(int i=;i<maxn;i++)
for(int j=i;j<maxn;j+=i)
G[j].push_back(i);
for(int i=;i<maxn;i++) rt[i]=new node;
}
void insert(int x)
{
int Len=G[x].size();
for(int i=;i<Len;i++){
node *cur=rt[G[x][i]];
cur->Min=min(cur->Min,x);
for(int j=;j>=;j--){
if(cur->ch[x>>j&]==NULL) cur->ch[x>>j&]=new node;
cur=cur->ch[x>>j&];
cur->Min=min(cur->Min,x);
} cur->val=x;
}
}
int query(int x,int k,int s)
{
if(x%k!=) return -;
node *cur=rt[k];
if(cur->Min>s-x) return -;
for(int i=;i>=;i--){
int tb=x>>i&;
if(cur->ch[tb^]!=NULL&&cur->ch[tb^]->Min<=s-x) cur=cur->ch[tb^];
else cur=cur->ch[tb];
}
return cur->val;
}
}T;
int main()
{
//cout<<100000*18*log(100000);=2e7
int N,i,j,opt,x,k,s;
T.init();
read(N); while(N--){
read(opt);
if(opt==){
read(x);
if(!vis[x]) vis[x]=,T.insert(x);
}
else{
read(x); read(k); read(s);
printf("%d\n",T.query(x,k,s));
}
}
return ;
}
CodeForces979D:Kuro and GCD and XOR and SUM(Trie树&指针&Xor)的更多相关文章
- hdu 4825 Xor Sum trie树
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Proble ...
- HDU4825 Xor Sum —— Trie树
题目链接:https://vjudge.net/problem/HDU-4825 Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
- LightOJ 1269 - Consecutive Sum Trie树
题意:给出一串序列,求区间连续异或值的最大和最小. 思路:如果不是出在专题里,想不到可以用字典树做.先求前缀异或值,转为二进制,加入Trie树中,如果要求最大,就是尽可能走和当前位数字相反的,这样异或 ...
- Xor - Trie树
题目描述 求一棵带边权的树的一条最大 Xor 路径的值.这里的"路径"不一定从根到叶子结点,中间一段路径只要满足条件也可以. 输入格式 第一行,一个整数 N ,表示一颗树有 N 个 ...
- CF 979D Kuro and GCD and XOR and SUM(异或 Trie)
CF 979D Kuro and GCD and XOR and SUM(异或 Trie) 给出q(<=1e5)个操作.操作分两种,一种是插入一个数u(<=1e5),另一种是给出三个数x, ...
- CodeForces 979 D Kuro and GCD and XOR and SUM
Kuro and GCD and XOR and SUM 题意:给你一个空数组. 然后有2个操作, 1是往这个数组里面插入某个值, 2.给你一个x, k, s.要求在数组中找到一个v,使得k|gcd( ...
- Codeforces 979 D. Kuro and GCD and XOR and SUM(异或和,01字典树)
Codeforces 979 D. Kuro and GCD and XOR and SUM 题目大意:有两种操作:①给一个数v,加入数组a中②给出三个数x,k,s:从当前数组a中找出一个数u满足 u ...
- codeforces 979D Kuro and GCD and XOR and SUM
题意: 给出两种操作: 1.添加一个数字x到数组. 2.给出s,x,k,从数组中找出一个数v满足gcd(x,k) % v == 0 && x + v <= s && ...
- Codeforces Round #482 (Div. 2) : Kuro and GCD and XOR and SUM (寻找最大异或值)
题目链接:http://codeforces.com/contest/979/problem/D 参考大神博客:https://www.cnblogs.com/kickit/p/9046953.htm ...
随机推荐
- SpringCloud-Eureka注册中心
什么是微服务,分布式? 分布式:不同的模块部署在不同的服务器上,可以更好的解决网站高并发. 微服务:架构设计概念,各服务间隔离(分布式也是隔离),自治(分布式依赖整体组合)其它特性(单一职责,边界,异 ...
- 详解 CSS 七种三栏布局技巧
作者:林东洲 链接:https://zhuanlan.zhihu.com/p/25070186 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 三栏布局,顾名思义就是 ...
- js获取table的值,js获取td里input的值
1.如果想让table具有可以编辑的功能,可以在table里嵌入input标签 写法{{ list_one[1] or '' }}的作用是,当list_one[1]取值为None时,前端web界面不至 ...
- excel 分类汇总函数
1.先用数组公式对单元格区域 B3:B39 ,进行提取去重复非空调单元格信息.单元格B52数组公式: =INDIRECT(TEXT(MIN(IF((COUNTIF(B$51:B51,B$3:B$39) ...
- redis hash 类型的操作命令
redis 文档: https://redis.readthedocs.io/en/2.4/index.html keys * type key --------------------------- ...
- time machine不备份指定文件夹
osx中常常会使用timemachine来备份一些文件,timemachine能够使某个文件夹恢复到之前某个时刻的状态,很的方便.但是备份须要空间,特别是有些我们并不想备份一些无关紧要的文件,比方电影 ...
- BeagleBone Black Industrial 工业版介绍
前言 在电子发烧友论坛看到有Beaglebone Black Industrial版的试用,这里介绍一下这块开发板. BBB是开源硬件,原理图.BOM等都开放下载,所以也有诸多兼容板. BBB兼容产品 ...
- 【转载】读懂IL代码就这么简单(二)
一 前言 IL系列 第一篇写完后 得到高人指点,及时更正了文章中的错误,也使得我写这篇文章时更加谨慎,自己在了解相关知识点时,也更为细致.个人觉得既然做为文章写出来,就一定要保证比较高的质量,和正确率 ...
- Android--向SD卡读写数据
// 向SD卡写入数据 private void writeSDcard(String str) { try { // 推断是否存在SD卡 if (Environment.getExternalSto ...
- Intel Naming Strategy--2
http://en.wikipedia.org/wiki/Intel_Corporation#Naming_strategy Naming strategy[edit] In 2006, Intel ...