There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:

(1) Every node is either red or black.

(2) The root is black.

(3) Every leaf (NULL) is black.

(4) If a node is red, then both its children are black.

(5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.



Figure 1               Figure 2            Figure 3

For each given binary search tree, you are supposed to tell if it is a legal red-black tree.

Input Specification:

Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.

Output Specification:

For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.

Sample Input:

3

9

7 -2 1 5 -4 -11 8 14 -15

9

11 -2 1 -7 5 -4 8 14 -15

8

10 -7 5 -6 8 15 -11 17

Sample Output:

Yes

No

No

#include<iostream> //偏难
#include<vector>
#include<math.h>
using namespace std;
struct node{
int val;
node* left;
node* right;
node(int v):val(v), left(NULL), right(NULL){
}
};
vector<int> a, pre;
int cnt=0, flag=0;
node* buildtree(node* t, int b, int e){
if(b>e) return NULL;
t=new node(a[b]);
int i=b+1;
while(i<=e&&abs(a[i])<abs(a[b])) i++;
t->left=buildtree(t->left, b+1, i-1);
t->right=buildtree(t->right, i, e);
return t;
}
bool isBTree(node* root, int num){
if(!root)
if(num!=cnt)
return false;
else
return true;
if(root->val>0) num++;
else{
if(root->right&&root->right->val<0) return false;
if(root->left&&root->left->val<0) return false;
}
return isBTree(root->left, num)&&isBTree(root->right, num);
}
int main(){
int k, n;
cin>>k;
for(int i=0; i<k; i++){
cin>>n;
a.clear();
a.resize(n);
cnt=0;
for(int j=0; j<n; j++)
cin>>a[j];
node* root=NULL;
root=buildtree(root, 0, n-1);
node* temp=root;
while(temp){
cnt=(temp->val>0?cnt+1:cnt);
temp=temp->left;
}
if(isBTree(root, 0)&&root->val>0)
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
return 0;
}

PAT 1135 Is It A Red-Black Tree的更多相关文章

  1. PAT A1135 Is It A Red Black Tree

    判断一棵树是否是红黑树,按题给条件建树,dfs判断即可~ #include<bits/stdc++.h> using namespace std; ; struct node { int ...

  2. [转载] 红黑树(Red Black Tree)- 对于 JDK TreeMap的实现

    转载自http://blog.csdn.net/yangjun2/article/details/6542321 介绍另一种平衡二叉树:红黑树(Red Black Tree),红黑树由Rudolf B ...

  3. Red–black tree ---reference wiki

    source address:http://en.wikipedia.org/wiki/Red%E2%80%93black_tree A red–black tree is a type of sel ...

  4. Red Black Tree 红黑树 AVL trees 2-3 trees 2-3-4 trees B-trees Red-black trees Balanced search tree 平衡搜索树

    小结: 1.红黑树:典型的用途是实现关联数组 2.旋转 当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质.为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树中某些 ...

  5. PAT甲级:1066 Root of AVL Tree (25分)

    PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...

  6. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

  7. CF1208H Red Blue Tree

    CF1208H Red Blue Tree 原本应该放在这里但是这题过于毒瘤..单独开了篇blog 首先考虑如果 $ k $ 无限小,那么显然整个树都是蓝色的.随着 $ k $ 逐渐增大,每个点都会有 ...

  8. PAT 1135 Is It A Red-Black Tree[难]

    1135 Is It A Red-Black Tree (30 分) There is a kind of balanced binary search tree named red-black tr ...

  9. 【刷题-PAT】A1135 Is It A Red-Black Tree (30 分)

    1135 Is It A Red-Black Tree (30 分) There is a kind of balanced binary search tree named red-black tr ...

随机推荐

  1. JeePlus:项目部署

    ylbtech-JeePlus:项目部署 1.返回顶部 1. 项目部署 1 开发工具:idea/eclipse/myeclipse+ mysql/oracle+tomcat6/7/8. 下面以ecli ...

  2. Eclipse中直接执行sql语句(图文说明)

    转自:https://blog.csdn.net/changjyzzu/article/details/45487847 1.首先新建sql文件,然后打开文件 22.右键点击空白处,点击set-con ...

  3. bzoj 1705: [Usaco2007 Nov]Telephone Wire 架设电话线【dp】

    i的初始化写成2了于是成功查错2h--怕不是个傻子 设f[i][j]为第i根高为j,转移是 \[ f[i][j]=min(f[i-1][k]+abs(k-j)*c+(j-h[i])^2)(j>= ...

  4. mysql插入二千万的测试数据进行测试,int和datetime比较

    时间存储用int和datetime哪个字段更合适,建立下面的两个表 测试环境是内存2个G,一核的虚拟机 CREATE TABLE `test_inttime` ( `id` int(11) NOT N ...

  5. c++ string函数合集

    s.substr(x,len) 在s中取出从x位置开始,长度为len的字符串,并返回string类型的字符串. s.find(a) 在s中查找字符串a,并返回起始下标(从0开始),若不存在,返回184 ...

  6. ASP.Net 知识点总结(四)

    1.get和post 的区别 get是从服务器上获取数据,post是向服务器传送数据; get安全性非常低,数据显示在地址栏,post安全性较高: 但是执行效率却比Post方法好: get有字节限制为 ...

  7. ACM_Uppercase(水题)

    Uppercase Time Limit: 2000/1000ms (Java/Others) Problem Description: 给出一句中间无特殊符号的英语句子,要求将各单词的首字母改大写. ...

  8. Git管理多个远程分支

    在此目录下使用GIT要注意一下几点: 因为这个目录是管理远程多个不同的分支的项目,所以使用GIT之前确认一下几点: 打开git bash,使用命令:git config –list查看目前本地的目录文 ...

  9. 【转】HIVE UDF UDAF UDTF 区别 使用

    原博文出自于:http://blog.csdn.net/longzilong216/article/details/23921235(暂时) 感谢! 自己写代码时候的利用到的模板   UDF步骤: 1 ...

  10. C# 代码笔记_文件

           string Route = @"D:\ksy\ksy\WebSite1\";//文件地址         string File_name = "user ...