bzoj1486【HNOI2009】最小圈
1486: [HNOI2009]最小圈
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 1778 Solved: 827
[Submit][Status][Discuss]
Description


Input
Output
Sample Input
Sample Output
HINT
Source
01分数规划+二分答案+spfa判负环
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define maxn 3005
#define maxm 10005
#define inf 1000000000
#define eps 1e-9
using namespace std;
struct edge{int next,to;double v,w;}e[maxm];
int n,m,cnt,head[maxn];
double dis[maxn];
bool flag,mark[maxn];
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void add_edge(int x,int y)
{
e[++cnt].next=head[x];
e[cnt].to=y;
head[x]=cnt;
}
inline void spfa(int x)
{
if (mark[x]){flag=true;return;}
mark[x]=true;
for(int i=head[x],y;i;i=e[i].next)
if (dis[x]+e[i].v<dis[y=e[i].to])
{
dis[y]=dis[x]+e[i].v;
spfa(y);
if (flag) return;
}
mark[x]=false;
}
inline bool judge()
{
F(i,1,n) dis[i]=mark[i]=0;
flag=false;
F(i,1,n)
{
spfa(i);
if (flag) return true;
}
return false;
}
int main()
{
n=read();m=read();
int x,y;double z,l=inf,r=-inf,mid;
F(i,1,m)
{
x=read();y=read();scanf("%lf",&z);
add_edge(x,y);
e[i].w=z;
l=min(l,z);
r=max(r,z);
}
while (r-l>=eps)
{
mid=(l+r)/2;
F(i,1,m) e[i].v=e[i].w-mid;
if (judge()) r=mid;
else l=mid;
}
printf("%.8lf\n",l);
return 0;
}
bzoj1486【HNOI2009】最小圈的更多相关文章
- BZOJ1486 HNOI2009 最小圈 【01分数规划】
BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...
- bzoj千题计划227:bzoj1486: [HNOI2009]最小圈
http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...
- bzoj1486: [HNOI2009]最小圈
二分+dfs. 这道题求图的最小环的每条边的权值的平均值μ. 这个平均值是大有用处的,求它我们就不用记录这条环到底有几条边构成. 如果我们把这个图的所有边的权值减去μ,就会出现负环. 所以二分求解. ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- 分数规划(Bzoj1486: [HNOI2009]最小圈)
题面 传送门 分数规划 分数规划有什么用? 可以把带分数的最优性求解式化成不带除发的运算 假设求max{\(\frac{a}{b},b>0\)} 二分一个权值\(k\) 令\(\frac{a}{ ...
- BZOJ1486:[HNOI2009]最小圈(最短路,二分)
Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Sample Output 3.66666667 Sol ...
- [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环
题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...
- 【BZOJ1486】[HNOI2009]最小圈 分数规划
[BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...
- bzoj 1486: [HNOI2009]最小圈 dfs求负环
1486: [HNOI2009]最小圈 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1022 Solved: 487[Submit][Status] ...
- BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )
二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...
随机推荐
- zoj 2001 Adding Reversed Numbers
Adding Reversed Numbers Time Limit: 2 Seconds Memory Limit: 65536 KB The Antique Comedians of M ...
- Go函数学习
package main import ( "fmt" "reflect" "runtime" "math" ) //函 ...
- 【最长上升子序列记录路径(n^2)】HDU 1160 FatMouse's Speed
https://vjudge.net/contest/68966#problem/J [Accepted] #include<iostream> #include<cstdio> ...
- isNaN+parseFloat进行统计以及对NaN的处理【JS验证数字】
今天遇到这么一个需求: 对数据进行统计,可是在统计的时候parseFloat的时候出来一个NaN.后来用isNaN判断,如果是NaN,就给其设置一个初值. 先看对两个方法的解释 parseFloat: ...
- redis哨兵模式配置
java对redis的读写 依赖包:jedis.jar maven下: <!-- https://mvnrepository.com/artifact/redis.clients/jedis - ...
- 某考试 T1 arg
题目描述 给出一个长度为 m 的序列 A, 请你求出有多少种 1...n 的排列, 满足 A 是它的一个 LIS. 输入格式 第一行两个整数 n, m. 接下来一行 m 个整数, 表示 A. 输出格式 ...
- json三种类型小笔记
JSON基本语法与图例 Object(对象类型)用{ }包含一系列无序的key–Value键值对表示,其中Key和Value之间用冒号分割,每个key-value之间用逗号分割. Array(数组类型 ...
- 过滤器链chain.doFilter(request,response)含义
过滤器的生命周期一般都要经过下面三个阶段: 初始化 当容器第一次加载该过滤器时,init() 方法将被调用.该类在这个方法中包含了一个指向 Filter Config 对象的引用. 过滤 过滤器的大多 ...
- Feign简介
Feign简介
- Linux系统启动流程分析
作者:郭孝星 微博:郭孝星的新浪微博 邮箱:allenwells@163.com 博客:http://blog.csdn.net/allenwells Github:https://github.co ...