题解:分块+离散化

解题报告:

一个分块典型题呢qwq还是挺妙的毕竟是道黑题

然,然后发现忘记放链接了先放链接QAQ

有两三种解法,都港下qwq

第一个是O(n5/3)的复杂度,谢总说不够优秀没有港,等下看了再写qwq

umm看了下大概明白了似乎qwq

虽然不知道我看的是不是这个解法×

就是法二不是有个f[][]表示区间内众数是谁嘛

然后法一中除了开这个以外还开了color[][][]表示区间内每个数的出现次数

这样就不用二分了!

但是这样的话就很容易T?是要吸氧的qwq

代码就懒得放了(主要懒得打了,,,这个题目的细节太多了,,,QAQ

第二个是O(n√nlogn)的,这个港下

就先分块,处理每个块里面的众数

然后对于每个询问,答案有两种可能

第一种,是中间被完全包含的块的众数

第二种,是两边出现过的数

然后再开个vector相当于桶排一样存下每个值所有出现的位置,每次lowerbound暴力查找第二种(两边的直接强行暴力枚举就好

第一种的话可以先暴力预处理出f[i][j]表示第i块到第j块的众数,这样每次就可以直接查了qwq)

然后就可以了,正确性我感觉还挺显然的就不证明辣?

其实我都懒得打这个代码了,,,本来感觉想通了思路之后大概不太复杂?但总有人问我做了没有,,,就很烦,,,于是就做了下

然后发现细节挺多挺麻烦:D

于是就耗了一天总算打出来了

布星啊现在状态越来越差了随便丢我个题都要调好久好久好久的,效率极低QAQ

对了这题给了我个小惊喜欸,,,就是,我才知道我的离散化一直有一点儿问题...就是我unique的那个tot,应该还要-=1我一直没有这么做,但玄学的是一直好像也没问题,,,ummm,,,很迷,,,幸好NOIp中我没有用离散化啥的不然怕是直接GG了?QAQ

然后放个代码就走了,就是记得把第三个方法学下趴qwq

#include<bits/stdc++.h>
using namespace std;
#define rp(i,x,y) for(register int i=x;i<=y;++i)
#define my(i,x,y) for(register int i=y;i>=x;--i)

+,sqtN=+;
int n,m,cjk,len,a[N],b[N],st[N],num[N],mx[sqtN][sqtN];
vector<int>gg[N];

inline int read()
{
    ;;
    '))ch=getchar();
    ;
    )+(x<<)+(ch^'),ch=getchar();
    return y?x:-x;
}
int cal(int x,int l,int r)
{
    );
    int L,R,ret1,ret2;
    L=,R=gg[x].size()-,ret1=R;
    while(L<=R)
    {
        ;
        ;
        ;
    }
    L=,R=gg[x].size()-,ret2=L;
    while(L<=R)
    {
        ;
        ;
        ;
    }
    ,);
}

int main()
{
//    freopen("cjk.in","r",stdin);
//    freopen("cjk.out","w",stdout);
    n=read();m=read();len=;cjk=(n-)/len+;
    rp(i,,n)st[i]=a[i]=read();
    sort(st+,st++n);,st++n)-st-;
    rp(i,,n)a[i]=lower_bound(st+,st++tot,a[i])-st;
    rp(i,,n)gg[a[i]].push_back(i);
    rp(i,,n)b[i]=(i-)/len+;
    rp(i,,cjk)
    {
        memset(num,,sizeof(num));
        ;
        rp(j,i,cjk)
        {
            rp(k,(j-)*len+,min(n,j*len))
            {
                num[a[k]]++;
                if(num[a[k]]>num[x] || (num[a[k]]==num[x] && x>a[k]))x=a[k];
            }
            mx[i][j]=x;
        }
    }
    ;
    while(m--)
    {
        )%n+,r=(read()+ans-)%n+,mxans=,x=;if(l>r)swap(l,r);
        )
            rp(i,l,r)
            {
                int d=cal(a[i],l,r);
                if(d>mxans || (d==mxans && x>a[i]))mxans=d,x=a[i];
            }
        else
        {
            x=mx[b[l]+][b[r]-];mxans=cal(x,l,r);//二分和max都打挂了?哭了QAQ
            );++i)
            {
                int d=cal(a[i],l,r);
                if(d>mxans || (d==mxans && x>a[i]))mxans=d,x=a[i];
            }
             && (i==r || i%len!=);--i)
            {
                int d=cal(a[i],l,r);
                if(d>mxans|| (d==mxans && x>a[i]))mxans=d,x=a[i];
            }
        }
        printf("%d\n",ans=st[x]);
    }
    ;
}

第三个是听说有个O(n√n)的?然后我不会:D先把解法二写了再来学这个qwq

洛谷P4168 蒲公英 [Violet] 分块的更多相关文章

  1. 洛谷P4168 蒲公英 分块处理区间众数模板

    题面. 许久以前我还不怎么去机房的时候,一位大佬好像一直在做这道题,他称这道题目为"大分块". 其实这道题目的思想不只可以用于处理区间众数,还可以处理很多区间数值相关问题. 让我们 ...

  2. 【洛谷 P4168】[Violet]蒲公英(分块)

    题目链接 题目大意:给定\(n\)个数和\(m\)个求区间众数的询问,强制在线 这题我\(debug\)了整整一个下午啊..-_- 从14:30~16:45终于\(debug\)出来了,\(debug ...

  3. 洛谷P4198 楼房重建 (分块)

    洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...

  4. 洛谷P4135 作诗 (分块)

    洛谷P4135 作诗 题目描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章 ...

  5. 洛谷P3247 [HNOI2016]最小公倍数 [分块,并查集]

    洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又 ...

  6. 「分块系列」「洛谷P4168 [Violet]」蒲公英 解题报告

    蒲公英 Description 我们把所有的蒲公英看成一个长度为\(n\)的序列(\(a_1,a_2,...a_n\)),其中\(a_i\)为一个正整数,表示第i棵蒲公英的种类的编号. 每次询问一个区 ...

  7. 洛谷 P4168 [Violet]蒲公英 解题报告

    P4168 [Violet]蒲公英 题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多 ...

  8. [洛谷P4168][Violet]蒲公英

    题目大意:有$n(n\leqslant4\times10^4)$个数,$m(m\leqslant5\times10^4)$个询问,每次问区间$[l,r]$内的众数,若相同输出最小的,强制在线. 题解: ...

  9. 洛谷 P4168 [Violet] 蒲公英

    历尽千辛万苦终于AC了这道题目... 我们考虑1个区间\([l,r]\), 被其完整包含的块的区间为\([L,R]\) 那么众数的来源? 1.\([l,L)\)或\((R,r]\)中出现的数字 2.\ ...

随机推荐

  1. 使用dshow捕获摄像头图像

    #include "stdafx.h" #include <DShow.h> #include <Guiddef.h> #include <strmi ...

  2. [转]linux下释放文件内存

    在Linux系统下,我们一般不需要去释放内存,因为系统已经将内存管理的很好.但是凡事也有例外,有的时候内存会被缓存占用掉,导致系统使用SWAP空间影响性能,此时就需要执行释放内存(清理缓存)的操作了. ...

  3. vmware下虚拟机不能上网问题解决

    这个问题困扰了好久,vmware下装的虚拟机可以通过DHCP获取单独IP,但当用到管控较严格的环境,需要它与主机共享IP时,就不好使了. 今天在一篇文章中找到答案,如下图,windows系统中要启动V ...

  4. unity2017.4.0f1使用AS3.0的AndroidSDK遇到的问题

    原因: Unity 在编译时会调用 Android SDK tools 中的 android 命令,而在新版本的 Android SDK tools 中,android这个命令已经废弃了,导致 Uni ...

  5. CentOS7--TigerVNC

    --安装服务yum install tigervnc-server -y --配置文件,多个用户就拷贝多个cp /lib/systemd/system/vncserver@.service /etc/ ...

  6. goto的用法

    using UnityEngine; using System.Collections; public class goto1 : MonoBehaviour { public bool can = ...

  7. Linux设备驱动剖析之SPI(三)

    572至574行,分配内存,注意对象的类型是struct spidev_data,看下它在drivers/spi/spidev.c中的定义: struct spidev_data { dev_t de ...

  8. WEB-DICT词库计划

    欢迎大家支持晓阳童鞋的词库计划,建立一个庞大的中文词库 地址如下:http://webdict.info/ 什么是WEB-DICT词库计划? WEB-DICT词表计划目标是通过机器学习算法以及人工标注 ...

  9. Makefile 中all 和.PHONY的作用

    请编写一个makefile同时编译.链接下面两个程序: main1.c: #include<stdio.h> int main(void) { printf("main1\n&q ...

  10. 【Spring源码深度解析学习系列】复杂标签属性解析(四)

    一.创建用于属性承载的BeanDefinition BeanDefiniton是一个接口,在Spring中存在三种实现:RootBeanDefinition.ChildBeanDefinition.G ...