UVa11183 Teen Girl Squad, 最小树形图,朱刘算法
Teen Girl Squad
Input: Standard Input
Output: Standard Output
You are part of a group of n teenage girls armed with cellphones. You have some news you want to tell everyone in the group. The problem is that no two of you are in the same room, and you must communicate using only cellphones. What's worse
is that due to excessive usage, your parents have refused to pay your cellphone bills, so you must distribute the news by calling each other in the cheapest possible way. You will call several of your friends, they will call some of their friends, and so on
until everyone in the group hears the news.
Each of you is using a different phone service provider, and you know the price of girl A calling girl B for all possible A and B. Not all of your friends like each other, and some of them will never call people they don't like. Your job is to find the cheapest
possible sequence of calls so that the news spreads from you to all n-1 other members of the group.
Input
The first line of input gives the number of cases, N (N<150). N test cases follow. Each one starts with two lines containing n (0<= n<=1000) and m (0 <= m <=
40,000) . Girls are numbered from 0 to n-1 , and you are girl 0. The next m lines will each contain 3 integers, u, v and w, meaning that a call from girl u to
girl v costs w cents (0 <= w <= 1000) . No other calls are possible because of grudges, rivalries and because they are, like, lame. The input file size is around 1200 KB.
Output
For each test case, output one line containing "Case #x:" followed by the cost of the cheapest method of distributing the news. If there is no solution, print "Possums!" instead.
Sample Input Sample Output
4 2 1 0 1 10 2 1 1 0 10 4 4 0 1 10 0 2 10 1 3 20 2 3 30 4 4 0 1 10 1 2 20 2 0 30 2 3 100 |
Case #1: 10 Case #2: Possums! Case #3: 40 Case #4: 130 |
最小树形图
有向图的最小生成树,而且规定了起点。
解法:1.首先dfs推断一下起点可达其它随意点,否则不存在树形图。
2.为每一个点找一条最小的入边,假设没环那么这些边就构成了最小树形图,转入4;否则转入3.
3.将环上每条边的边权加入到ans中,同一时候形成新的点new,对于环内多有的点i,假设存在边<j,i>则<j,new>的边权等于全部 <j,i>-<pre[i],i>中最小的(由于缩点后再次构图必须从环中去除一条边<pre[i],i>再加入一条最小边<x,i>,这样就能够保证答案的正确性,非常巧妙,换个图就非常清晰了),<new,j>的边权=全部<i,j>的最小值,缩点完毕,转向2.
4.缩点后n个点,n-1条边,切无环,此时就是一颗连通树了,ans+=这n-1条边的边权记得答案;
以上是国人发明的“朱刘算法”,邻接矩阵复杂度(n ^3)临界表复杂度(VE)。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#define for0(a,b) for(a=0;a<b;++a)
#define for1(a,b) for(a=1;a<=b;++a)
#define foru(i,a,b) for(i=a;i<=b;++i)
#define ford(i,a,b) for(i=a;i>=b;--i)
using namespace std;
typedef long long ll;
const int maxn = 1000 + 5;
const int maxm = 40000 + 5;
const int INF = 1e9; struct Edge{ int u, v, cost;};
Edge edge[maxm];
int pre[maxn], id[maxn], vis[maxn], in[maxn];
int zhuliu(int root, int n, int m, Edge edge[])
{
int res = 0, u, v;
int i, j;
while(1){
for0(i,n) in[i] = INF;
for0(i,m) if(edge[i].u != edge[i].v && edge[i].cost < in[edge[i].v]){
pre[edge[i].v] = edge[i].u;
in[edge[i].v] = edge[i].cost;
}
for0(i,n) if(i != root && in[i] == INF) return -1;//不能存在最小树形图
int tn = 0;
memset(id, -1, sizeof id );
memset(vis, -1, sizeof vis );
in[root] = 0;
for0(i,n)
{
res += in[i];
v = i;
while(vis[v] != i && id[v]==-1 && v!=root){
vis[v] = i;
v = pre[v];
}
if(v != root && id[v] == -1){
for(int u=pre[v]; u != v; u = pre[u])
id[u] = tn;
id[v] = tn++;
}
}
if(tn==0) break; //没有有向环
for0(i,n) if(id[i] == -1)
id[i] = tn++;
for(i=0; i<m; )
{
v = edge[i].v;
edge[i].u = id[edge[i].u];
edge[i].v = id[edge[i].v];
if(edge[i].u != edge[i].v)
edge[i++].cost -= in[v];
else
swap(edge[i], edge[--m]);
}
n = tn;
root = id[root];
}
return res;
} int g[maxn][maxn]; int main()
{
#ifndef ONLINE_JUDGE
freopen("in.cpp","r",stdin);
freopen("out.cpp", "w", stdout);
#endif // ONLINE_JUDGE
int n, m;
int T, i, j;
scanf("%d", &T);
for(int cas=1; cas<=T; ++cas)
{
scanf("%d%d", &n, &m);
for0(i,n) for0(j,n)
g[i][j] = INF;
int u, v, c;
while(m--)
{
scanf("%d%d%d", &u, &v, &c);
if(u==v) continue;
g[u][v] = min(g[u][v], c);
}
int e = 0;
for0(i,n) for0(j,n) if(g[i][j]<INF){
edge[e].u = i;
edge[e].v = j;
edge[e++].cost = g[i][j];
}
int ans = zhuliu(0, n, e, edge );
printf("Case #%d: ", cas);
if(ans == -1) printf("Possums!\n");
else printf("%d\n", ans);
}
return 0;
}
UVa11183 Teen Girl Squad, 最小树形图,朱刘算法的更多相关文章
- 最小树形图——朱刘算法(Edmonds)
定义:一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 朱刘算法实现过程: [在选出入边集后(看步骤1),若有向图中不存在有向环,说明该图就是最小树形图] 1,选入 ...
- POJ 3164 Command Network ( 最小树形图 朱刘算法)
题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...
- poj3164(最小树形图&朱刘算法模板)
题目链接:http://poj.org/problem?id=3164 题意:第一行为n, m,接下来n行为n个点的二维坐标, 再接下来m行每行输入两个数u, v,表点u到点v是单向可达的,求这个有向 ...
- POJ 3164 Command Network 最小树形图 朱刘算法
=============== 分割线之下摘自Sasuke_SCUT的blog============= 最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T, ...
- 最小树形图--朱刘算法([JSOI2008]小店购物)
题面 luogu Sol 首先设一个 \(0\) 号点,向所有点连边,表示初始价值 显然这个图的一个 \(0\) 为根的最小有向生成树的边权和就是每个买一次的最小价值 再买就一定能优惠(包含 \(0\ ...
- 洛谷P4716 【模板】最小树形图(朱刘算法)
题意 题目链接 Sol 朱刘算法?感觉又是一种神仙贪心算法 大概就是每次贪心的用每个点边权最小的入边更新答案,如果不行的话就缩起来找其他的边 不详细说了,丢链接走人.. #include<bit ...
- UVA11183 Teen Girl Squad —— 最小树形图
题目链接:https://vjudge.net/problem/UVA-11183 You are part of a group of n teenage girls armed with cell ...
- UVa11183 - Teen Girl Squad(最小树形图-裸)
Problem I Teen Girl Squad Input: Standard Input Output: Standard Output -- 3 spring rolls please. - ...
- POJ - 3164-Command Network 最小树形图——朱刘算法
POJ - 3164 题意: 一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 题目就是求这个最小的树形图. 参考资料:https://blog.csdn.net/ ...
- bzoj 4349 最小树形图——朱刘算法
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4349. 学习博客:http://www.cnblogs.com/xzxl/p/7243466 ...
随机推荐
- UVALive 3989 Ladies' Choice
经典的稳定婚姻匹配问题 UVALive - 3989 Ladies' Choice Time Limit: 6000MS Memory Limit: Unknown 64bit IO Format: ...
- iOS WebCore的WebEvent和EventHandler
WebEvent是iOS专有的类,负责封装和携带从UIKit得到的系统事件信息,并由WebKit层的WAKResponder子类传递到WebCore的EventHandler. UIKit层的逻辑可参 ...
- Oracle中查询各种对象的方法小结
--查看当前库中的所有表select * from all_tables a where a.table_name='INFOCODE_P20081'--查看表结构select * from all_ ...
- WinForm - 格式化DataGridView单元格数据
效果: 代码: /// <summary> /// 格式化数据 /// </summary> private void dataGridView1_CellFormatting ...
- svn:怎样批量删除.svn文件
怎样批量删除.svn文件 使用SVN工具的时候会生成一些以“svn”作为后缀的文件,而且每个文件夹下都有,如果想删除这些.svn文件夹,通过手动删除的渠道是很繁琐的事情. 通过以下的简单步骤可以在右键 ...
- 安装MyEclipse Color Themes
下载地址:http://eclipsecolorthemes.org/?list=toppicks&lang=html 安装步骤如下: 1.Import---Preferences 2.选择下 ...
- 转:携程App的网络性能优化实践
http://kb.cnblogs.com/page/519824/ 携程App的网络性能优化实践 受益匪浅的一篇文章,让我知道网络交互并不是简单的传输和接受数据.真正的难点在于后面的性能优化 下面对 ...
- Maven和Eclipse联合开发(转)
最近公司突然把以前的架构推到从来,这个还真需要勇气,不过也是的,基础不好,再好的房子也站不稳.公司采用Maven作为项目管理,WebService项目框架采用SDHI.(Spring+Dubbo+He ...
- mysql basic operation,mysql总结
mysql> select * from wifi_data where dev_id like "0023-AABBCCCCBBAA" ; 1.显示数据库列表.show d ...
- iOS开发RunTime之函数调用
文章来自小笨狼的iOS博客,一直认为csdn的博客UI不太好看,看博客不太爽.所以自己搭建了一个博客. 欢迎各位去链接中看我的博客.也欢迎大家加QQ群讨论iOS技术问题 经过两个多月的面试,工作最终尘 ...