UVa11183 Teen Girl Squad, 最小树形图,朱刘算法
Teen Girl Squad
Input: Standard Input
Output: Standard Output
You are part of a group of n teenage girls armed with cellphones. You have some news you want to tell everyone in the group. The problem is that no two of you are in the same room, and you must communicate using only cellphones. What's worse
is that due to excessive usage, your parents have refused to pay your cellphone bills, so you must distribute the news by calling each other in the cheapest possible way. You will call several of your friends, they will call some of their friends, and so on
until everyone in the group hears the news.
Each of you is using a different phone service provider, and you know the price of girl A calling girl B for all possible A and B. Not all of your friends like each other, and some of them will never call people they don't like. Your job is to find the cheapest
possible sequence of calls so that the news spreads from you to all n-1 other members of the group.
Input
The first line of input gives the number of cases, N (N<150). N test cases follow. Each one starts with two lines containing n (0<= n<=1000) and m (0 <= m <=
40,000) . Girls are numbered from 0 to n-1 , and you are girl 0. The next m lines will each contain 3 integers, u, v and w, meaning that a call from girl u to
girl v costs w cents (0 <= w <= 1000) . No other calls are possible because of grudges, rivalries and because they are, like, lame. The input file size is around 1200 KB.
Output
For each test case, output one line containing "Case #x:" followed by the cost of the cheapest method of distributing the news. If there is no solution, print "Possums!" instead.
Sample Input Sample Output
4 2 1 0 1 10 2 1 1 0 10 4 4 0 1 10 0 2 10 1 3 20 2 3 30 4 4 0 1 10 1 2 20 2 0 30 2 3 100 |
Case #1: 10 Case #2: Possums! Case #3: 40 Case #4: 130 |
最小树形图
有向图的最小生成树,而且规定了起点。
解法:1.首先dfs推断一下起点可达其它随意点,否则不存在树形图。
2.为每一个点找一条最小的入边,假设没环那么这些边就构成了最小树形图,转入4;否则转入3.
3.将环上每条边的边权加入到ans中,同一时候形成新的点new,对于环内多有的点i,假设存在边<j,i>则<j,new>的边权等于全部 <j,i>-<pre[i],i>中最小的(由于缩点后再次构图必须从环中去除一条边<pre[i],i>再加入一条最小边<x,i>,这样就能够保证答案的正确性,非常巧妙,换个图就非常清晰了),<new,j>的边权=全部<i,j>的最小值,缩点完毕,转向2.
4.缩点后n个点,n-1条边,切无环,此时就是一颗连通树了,ans+=这n-1条边的边权记得答案;
以上是国人发明的“朱刘算法”,邻接矩阵复杂度(n ^3)临界表复杂度(VE)。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#define for0(a,b) for(a=0;a<b;++a)
#define for1(a,b) for(a=1;a<=b;++a)
#define foru(i,a,b) for(i=a;i<=b;++i)
#define ford(i,a,b) for(i=a;i>=b;--i)
using namespace std;
typedef long long ll;
const int maxn = 1000 + 5;
const int maxm = 40000 + 5;
const int INF = 1e9; struct Edge{ int u, v, cost;};
Edge edge[maxm];
int pre[maxn], id[maxn], vis[maxn], in[maxn];
int zhuliu(int root, int n, int m, Edge edge[])
{
int res = 0, u, v;
int i, j;
while(1){
for0(i,n) in[i] = INF;
for0(i,m) if(edge[i].u != edge[i].v && edge[i].cost < in[edge[i].v]){
pre[edge[i].v] = edge[i].u;
in[edge[i].v] = edge[i].cost;
}
for0(i,n) if(i != root && in[i] == INF) return -1;//不能存在最小树形图
int tn = 0;
memset(id, -1, sizeof id );
memset(vis, -1, sizeof vis );
in[root] = 0;
for0(i,n)
{
res += in[i];
v = i;
while(vis[v] != i && id[v]==-1 && v!=root){
vis[v] = i;
v = pre[v];
}
if(v != root && id[v] == -1){
for(int u=pre[v]; u != v; u = pre[u])
id[u] = tn;
id[v] = tn++;
}
}
if(tn==0) break; //没有有向环
for0(i,n) if(id[i] == -1)
id[i] = tn++;
for(i=0; i<m; )
{
v = edge[i].v;
edge[i].u = id[edge[i].u];
edge[i].v = id[edge[i].v];
if(edge[i].u != edge[i].v)
edge[i++].cost -= in[v];
else
swap(edge[i], edge[--m]);
}
n = tn;
root = id[root];
}
return res;
} int g[maxn][maxn]; int main()
{
#ifndef ONLINE_JUDGE
freopen("in.cpp","r",stdin);
freopen("out.cpp", "w", stdout);
#endif // ONLINE_JUDGE
int n, m;
int T, i, j;
scanf("%d", &T);
for(int cas=1; cas<=T; ++cas)
{
scanf("%d%d", &n, &m);
for0(i,n) for0(j,n)
g[i][j] = INF;
int u, v, c;
while(m--)
{
scanf("%d%d%d", &u, &v, &c);
if(u==v) continue;
g[u][v] = min(g[u][v], c);
}
int e = 0;
for0(i,n) for0(j,n) if(g[i][j]<INF){
edge[e].u = i;
edge[e].v = j;
edge[e++].cost = g[i][j];
}
int ans = zhuliu(0, n, e, edge );
printf("Case #%d: ", cas);
if(ans == -1) printf("Possums!\n");
else printf("%d\n", ans);
}
return 0;
}
UVa11183 Teen Girl Squad, 最小树形图,朱刘算法的更多相关文章
- 最小树形图——朱刘算法(Edmonds)
定义:一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 朱刘算法实现过程: [在选出入边集后(看步骤1),若有向图中不存在有向环,说明该图就是最小树形图] 1,选入 ...
- POJ 3164 Command Network ( 最小树形图 朱刘算法)
题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...
- poj3164(最小树形图&朱刘算法模板)
题目链接:http://poj.org/problem?id=3164 题意:第一行为n, m,接下来n行为n个点的二维坐标, 再接下来m行每行输入两个数u, v,表点u到点v是单向可达的,求这个有向 ...
- POJ 3164 Command Network 最小树形图 朱刘算法
=============== 分割线之下摘自Sasuke_SCUT的blog============= 最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T, ...
- 最小树形图--朱刘算法([JSOI2008]小店购物)
题面 luogu Sol 首先设一个 \(0\) 号点,向所有点连边,表示初始价值 显然这个图的一个 \(0\) 为根的最小有向生成树的边权和就是每个买一次的最小价值 再买就一定能优惠(包含 \(0\ ...
- 洛谷P4716 【模板】最小树形图(朱刘算法)
题意 题目链接 Sol 朱刘算法?感觉又是一种神仙贪心算法 大概就是每次贪心的用每个点边权最小的入边更新答案,如果不行的话就缩起来找其他的边 不详细说了,丢链接走人.. #include<bit ...
- UVA11183 Teen Girl Squad —— 最小树形图
题目链接:https://vjudge.net/problem/UVA-11183 You are part of a group of n teenage girls armed with cell ...
- UVa11183 - Teen Girl Squad(最小树形图-裸)
Problem I Teen Girl Squad Input: Standard Input Output: Standard Output -- 3 spring rolls please. - ...
- POJ - 3164-Command Network 最小树形图——朱刘算法
POJ - 3164 题意: 一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 题目就是求这个最小的树形图. 参考资料:https://blog.csdn.net/ ...
- bzoj 4349 最小树形图——朱刘算法
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4349. 学习博客:http://www.cnblogs.com/xzxl/p/7243466 ...
随机推荐
- Sqlite ContentProvider Loader 上下文 对话框
一.整体工程图 二.activity_main.xml <RelativeLayout xmlns:android="http://schemas.android.com/apk/re ...
- 二路单调自增子序列模型【acdream 1216】
题目:acdream 1216 Beautiful People 题意:每一个人有两个值,能力值和潜力值,然后要求一个人的这两个值都严格大于第二个人的时候,这两个人才干呆在一块儿,给出很多人的值,求最 ...
- Effective C++ Item 40 明智而审慎地使用多重继承
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie 经验:多重继承比单一继承复杂.它可能导致新的歧义性,以及对 virtual 继承的须要 演示 ...
- InstallShield安装包卸载-完美卸载
在前面的日志里面介绍了在卸载的时候删除整个安装文件夹的方式.可是当遇到程序生成的文件不是在同一个文件夹下,有时甚至是用户自己定义的文件夹路径,这个时候我们卸载的时候是没有将用户自己定义的文件夹给删除掉 ...
- Poj 3246 Balanced Lineup(线段树基础)
依旧是线段树基础题 询问区间的最大值和最小值之差,只有询问,没有插入删除.继续理解基础线段树 #include <iostream> #include <algorithm> ...
- IOS_Note
关键字:可以搜索这些关键字找到具体内容 退回输入键盘.CGRect.CGPoint & CGSize.设置透明度.设置背景色.自定义颜色. 竖屏.横屏.状态栏高 (显示时间和网络状态). 导 ...
- 05-IOSCore - 单例模式、KVO
单例模式 是设计模式之一,使用频率高,让数据或对象在程序的各个地方都能访问,保持唯一 要素: 各个地方都能访问方法 + 静态消息 只要导入类 就能访问 保持唯一 1.在静态消息内限制对象的创建 2.外 ...
- MAMP:在 OSX 中搭建 Apache, MySQL, PHP 环境并本地安装、调试 WordPress
MAMP 这个名字来源于 Macintosh Apache MySQL PHP,显然专门用来在 Mac 环境下搭建 Apache.MySQL.PHP 平台. 虽然 OSX 中已经预装了 Apache ...
- JQuery 事件及案例
JQuery事件与JavaScript事件相似,只是把其中的on去掉 1.click,dblclick事件 案例1:点击缩略图换背景 <html xmlns="http://www.w ...
- SqlParameter参数化查询
上篇博客写了关于重构代码用到的SQLHelper类,这个类包括四种函数,根据是否含参和是否有返回值各分两种.在这里写写传参过程用到的SqlParameter. 如果我们使用如下拼接sql字符串的方式进 ...