Teen Girl Squad 

Input: 
Standard Input

Output: Standard Output

You are part of a group of n teenage girls armed with cellphones. You have some news you want to tell everyone in the group. The problem is that no two of you are in the same room, and you must communicate using only cellphones. What's worse
is that due to excessive usage, your parents have refused to pay your cellphone bills, so you must distribute the news by calling each other in the cheapest possible way. You will call several of your friends, they will call some of their friends, and so on
until everyone in the group hears the news.

Each of you is using a different phone service provider, and you know the price of girl A calling girl B for all possible A and B. Not all of your friends like each other, and some of them will never call people they don't like. Your job is to find the cheapest
possible sequence of calls so that the news spreads from you to all n-1 other members of the group.

Input

The first line of input gives the number of cases, (N<150). N test cases follow. Each one starts with two lines containing n (0<= n<=1000) and m (0 <= m <=
40,000) . Girls are numbered from 0 to n-1 , and you are girl 0. The next m lines will each contain 3 integers, uv and w, meaning that a call from girl u to
girl v costs w cents (0 <= w <= 1000) . No other calls are possible because of grudges, rivalries and because they are, like, lame. The input file size is around 1200 KB.

Output

For each test case, output one line containing "Case #x:" followed by the cost of the cheapest method of distributing the news. If there is no solution, print "Possums!" instead.

Sample Input    Sample Output

4
2
1
0 1 10
2
1
1 0 10
4
4
0 1 10
0 2 10
1 3 20
2 3 30
4
4
0 1 10
1 2 20
2 0 30
2 3 100
Case #1: 10
Case #2: Possums!
Case #3: 40
Case #4: 130
                  


最小树形图

有向图的最小生成树,而且规定了起点。

解法:1.首先dfs推断一下起点可达其它随意点,否则不存在树形图。

      2.为每一个点找一条最小的入边,假设没环那么这些边就构成了最小树形图,转入4;否则转入3.

      3.将环上每条边的边权加入到ans中,同一时候形成新的点new,对于环内多有的点i,假设存在边<j,i>则<j,new>的边权等于全部 <j,i>-<pre[i],i>中最小的(由于缩点后再次构图必须从环中去除一条边<pre[i],i>再加入一条最小边<x,i>,这样就能够保证答案的正确性,非常巧妙,换个图就非常清晰了),<new,j>的边权=全部<i,j>的最小值,缩点完毕,转向2.

      4.缩点后n个点,n-1条边,切无环,此时就是一颗连通树了,ans+=这n-1条边的边权记得答案;

以上是国人发明的“朱刘算法”,邻接矩阵复杂度(n ^3)临界表复杂度(VE)。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#define for0(a,b) for(a=0;a<b;++a)
#define for1(a,b) for(a=1;a<=b;++a)
#define foru(i,a,b) for(i=a;i<=b;++i)
#define ford(i,a,b) for(i=a;i>=b;--i)
using namespace std;
typedef long long ll;
const int maxn = 1000 + 5;
const int maxm = 40000 + 5;
const int INF = 1e9; struct Edge{ int u, v, cost;};
Edge edge[maxm];
int pre[maxn], id[maxn], vis[maxn], in[maxn];
int zhuliu(int root, int n, int m, Edge edge[])
{
int res = 0, u, v;
int i, j;
while(1){
for0(i,n) in[i] = INF;
for0(i,m) if(edge[i].u != edge[i].v && edge[i].cost < in[edge[i].v]){
pre[edge[i].v] = edge[i].u;
in[edge[i].v] = edge[i].cost;
}
for0(i,n) if(i != root && in[i] == INF) return -1;//不能存在最小树形图
int tn = 0;
memset(id, -1, sizeof id );
memset(vis, -1, sizeof vis );
in[root] = 0;
for0(i,n)
{
res += in[i];
v = i;
while(vis[v] != i && id[v]==-1 && v!=root){
vis[v] = i;
v = pre[v];
}
if(v != root && id[v] == -1){
for(int u=pre[v]; u != v; u = pre[u])
id[u] = tn;
id[v] = tn++;
}
}
if(tn==0) break; //没有有向环
for0(i,n) if(id[i] == -1)
id[i] = tn++;
for(i=0; i<m; )
{
v = edge[i].v;
edge[i].u = id[edge[i].u];
edge[i].v = id[edge[i].v];
if(edge[i].u != edge[i].v)
edge[i++].cost -= in[v];
else
swap(edge[i], edge[--m]);
}
n = tn;
root = id[root];
}
return res;
} int g[maxn][maxn]; int main()
{
#ifndef ONLINE_JUDGE
freopen("in.cpp","r",stdin);
freopen("out.cpp", "w", stdout);
#endif // ONLINE_JUDGE
int n, m;
int T, i, j;
scanf("%d", &T);
for(int cas=1; cas<=T; ++cas)
{
scanf("%d%d", &n, &m);
for0(i,n) for0(j,n)
g[i][j] = INF;
int u, v, c;
while(m--)
{
scanf("%d%d%d", &u, &v, &c);
if(u==v) continue;
g[u][v] = min(g[u][v], c);
}
int e = 0;
for0(i,n) for0(j,n) if(g[i][j]<INF){
edge[e].u = i;
edge[e].v = j;
edge[e++].cost = g[i][j];
}
int ans = zhuliu(0, n, e, edge );
printf("Case #%d: ", cas);
if(ans == -1) printf("Possums!\n");
else printf("%d\n", ans);
}
return 0;
}

UVa11183 Teen Girl Squad, 最小树形图,朱刘算法的更多相关文章

  1. 最小树形图——朱刘算法(Edmonds)

    定义:一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 朱刘算法实现过程: [在选出入边集后(看步骤1),若有向图中不存在有向环,说明该图就是最小树形图] 1,选入 ...

  2. POJ 3164 Command Network ( 最小树形图 朱刘算法)

    题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...

  3. poj3164(最小树形图&朱刘算法模板)

    题目链接:http://poj.org/problem?id=3164 题意:第一行为n, m,接下来n行为n个点的二维坐标, 再接下来m行每行输入两个数u, v,表点u到点v是单向可达的,求这个有向 ...

  4. POJ 3164 Command Network 最小树形图 朱刘算法

    =============== 分割线之下摘自Sasuke_SCUT的blog============= 最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T, ...

  5. 最小树形图--朱刘算法([JSOI2008]小店购物)

    题面 luogu Sol 首先设一个 \(0\) 号点,向所有点连边,表示初始价值 显然这个图的一个 \(0\) 为根的最小有向生成树的边权和就是每个买一次的最小价值 再买就一定能优惠(包含 \(0\ ...

  6. 洛谷P4716 【模板】最小树形图(朱刘算法)

    题意 题目链接 Sol 朱刘算法?感觉又是一种神仙贪心算法 大概就是每次贪心的用每个点边权最小的入边更新答案,如果不行的话就缩起来找其他的边 不详细说了,丢链接走人.. #include<bit ...

  7. UVA11183 Teen Girl Squad —— 最小树形图

    题目链接:https://vjudge.net/problem/UVA-11183 You are part of a group of n teenage girls armed with cell ...

  8. UVa11183 - Teen Girl Squad(最小树形图-裸)

    Problem I Teen Girl Squad  Input: Standard Input Output: Standard Output -- 3 spring rolls please. - ...

  9. POJ - 3164-Command Network 最小树形图——朱刘算法

    POJ - 3164 题意: 一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 题目就是求这个最小的树形图. 参考资料:https://blog.csdn.net/ ...

  10. bzoj 4349 最小树形图——朱刘算法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4349. 学习博客:http://www.cnblogs.com/xzxl/p/7243466 ...

随机推荐

  1. MYSQ提高L查询效率的策略总结

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值推断,否则将导致引擎放弃使用索 ...

  2. Android常用动画Animation的使用

    Andriod中有几种常用的Animation AlphaAnimation  淡入淡出效果 RotateAnimation 旋转效果 ScaleAnimation 缩放动画 TranslaAnima ...

  3. linux popen函数

    描述 popen() 函数 用 创建管道 的 方式启动一个 进程, 并调用 shell. 因为 管道是被定义成单向的, 所以 type 参数 只能定义成 只读或者 只写, 不能是 两者同时, 结果流也 ...

  4. Beginning MyBatis 3 Part 2 : How to Handle One-to-Many and One-to-One Selects

    One of the latest MyBatis feature is the ability to use Annotations or XML to do One-to-One or One-t ...

  5. C++中实现对map按照value值进行排序 - 菜鸟变身记 - 51CTO技术博客

    C++中实现对map按照value值进行排序 - 菜鸟变身记 - 51CTO技术博客 C++中实现对map按照value值进行排序 2012-03-15 15:32:36 标签:map 职场 休闲 排 ...

  6. POJ 2455 网络流 基础题 二分+网络流 dicnic 以及 sap算法

    Secret Milking Machine Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8189   Accepted: ...

  7. [置顶] Guava学习之Iterators

    Iterators类提供了返回Iterator类型的对象或者对Iterator类型对象操作的方法.除了特别的说明,Iterators类中所有的方法都在Iterables类中有相应的基于Iterable ...

  8. C#调用存储过程实现分页(个人代码笔记)

    分页的存储过程: drop proc LoadPageMain create Proc LoadPageMain @pageIndex )) Fid     ) ].Rows )            ...

  9. c语言,结构体里面的函数

    以linux-3.2内核代码为例,结构体里面的函数的用法: 例,在某驱动文件中,定义了一个平台设备驱动: static struct platform_driver s3c24xx_led_drive ...

  10. hdu1151Air Raid

    Air Raid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...