在matlab中实现梯度下降法
梯度下降法的原理,本文不再描述,请参阅其它资料。
梯度下降法函数function [k ender]=steepest(f,x,e),需要三个参数f、x和e,其中f为目标函数,x为初始点,e为终止误差。输出也为两个参数,k表示迭代的次数,ender表示找到的最低点。
steepest.m:
function [k ender]=steepest(f,x,e)
%梯度下降法,f为目标函数(两变量x1和x2),x为初始点,如[3;4]
syms x1 x2 m; %m为学习率
d=-[diff(f,x1);diff(f,x2)]; %分别求x1和x2的偏导数,即下降的方向
flag=1; %循环标志
k=0; %迭代次数
while(flag)
d_temp=subs(d,x1,x(1)); %将起始点代入,求得当次下降x1梯度值
d_temp=subs(d_temp,x2,x(2)); %将起始点代入,求得当次下降x2梯度值
nor=norm(d_temp); %范数
if(nor>=e)
x_temp=x+m*d_temp; %改变初始点x的值
f_temp=subs(f,x1,x_temp(1)); %将改变后的x1和x2代入目标函数
f_temp=subs(f_temp,x2,x_temp(2));
h=diff(f_temp,m); %对m求导,找出最佳学习率
m_temp=solve(h); %求方程,得到当次m
x=x+m_temp*d_temp; %更新起始点x
k=k+1;
else
flag=0;
end
end
ender=double(x); %终点
end
调用示例1:
syms x1 x2;
f=(x1-2)^2+2*(x2-1)^2;
x=[1;3];
e=10^(-20);
[k ender]=steepest(f,x,e)
结果:
k =
27
ender =
2
1
调用示例2:
syms x1 x2;
f=x1-x2+2*x1^2+2*x1*x2+x2^2;
x=[0;0];
e=10^(-20);
[k ender]=steepest(f,x,e)
结果:
k =
58
ender =
-1.0000
1.5000
调用示例3:
syms x1 x2;
f=3/2*x1^2+1/2*x2^2-x1*x2-2*x1;
x=[0;0];
e=10^(-2);
[k ender]=steepest(f,x,e)
结果:
k =
9
ender =
0.9959
0.9877
在matlab中实现梯度下降法的更多相关文章
- 2.9 logistic回归中的梯度下降法(非常重要,一定要重点理解)
怎么样计算偏导数来实现logistic回归的梯度下降法 它的核心关键点是其中的几个重要公式用来实现logistic回归的梯度下降法 接下来开始学习logistic回归的梯度下降法 logistic回归 ...
- [机器学习] ML重要概念:梯度(Gradient)与梯度下降法(Gradient Descent)
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课 ...
- (3)梯度下降法Gradient Descent
梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...
- <反向传播(backprop)>梯度下降法gradient descent的发展历史与各版本
梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hin ...
- 梯度下降法的python代码实现(多元线性回归)
梯度下降法的python代码实现(多元线性回归最小化损失函数) 1.梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向 ...
- 梯度下降法求解函数极大值-Matlab
目录 目录题目作答1. 建立函数文件ceshi.m2. 这是调用的命令,也可以写在.m文件里3. 输出结果题外话 题目 作答 本文使用MATLAB作答 1. 建立函数文件ceshi.m functio ...
- 机器学习中梯度下降法原理及用其解决线性回归问题的C语言实现
本文讲梯度下降(Gradient Descent)前先看看利用梯度下降法进行监督学习(例如分类.回归等)的一般步骤: 1, 定义损失函数(Loss Function) 2, 信息流forward pr ...
- 如何选择梯度下降法中的学习速率α(Gradient Descent Learning Rate Alpha)
梯度下降算法的任务是寻找参数θ,使之能够最小化损失函数. 那么梯度下降法中的学习速率α应该如何选择呢?通常我们画出损失函数随迭代次数增加而变化的曲线. 可能会得到如下的一条曲线,x轴表示迭代次数,y轴 ...
- sklearn中实现随机梯度下降法(多元线性回归)
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系 ...
随机推荐
- tinyweb集成springmvc 的一种可行方式
最近tiny项目中集成了springmvc,而且使用的tiny的版本比较低,所以整合起来官网给的前两种方式都行不通. 而且有个tiny整合springmvc的maven依赖都下载不了.所以只有使用第三 ...
- 为什么要用GCD-Swift2.x
为什么要用GCD-Swift2.x 当今世界,多核已然普及.但是APP却不见得很好的跟上了这个趋势.APP 想要利用好多核就必须可以保证任务能有效的分配.并行执行可以让APP同时执行很多 的任务.这个 ...
- pyquery 安装
取得网页源代码,导入pyquery库 pip3 install pyquery 如果报错的话:python安装pyquery报错error: 'libxml/xmlversion.h' f ...
- ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...
- 21069207《Linux内核原理与分析》第四周作业
本周首先我结合mooc网的视频资料,了解了计算机的三大法宝,分别是存储程序计算机,函数调用堆栈和中断机制. 在计算机的三大法宝中,存储程序计算机是根本,函数调用堆栈是高级语言运行的基础,而中断机制成就 ...
- OpenGL中的渐变颜色绘图(应力可视化)
#include <GL/glut.h> #include <iostream> #include <cmath> using namespace std; ; ; ...
- Nutch1.2 的安装与使用
Nutch1.2的安装与使用 1.nutch1.2下载 下载地址 http://archive.apache.org/dist/nutch/ 2.nutch1.2目录 bin:用于命 ...
- jQuery插件初级练习3答案
html: $("p").fontcolor().html("qaq") jQuery: $.fn.extend({ fontcolor:function(){ ...
- 关于分页插件PageHelper
上课的时候学习了分页插件,感受到了它的强大,这里总结如下: 1.首先在spring配置文件中引入依赖jar包: <dependency> <groupId>com.github ...
- ASP.NET Core开源地址
https://github.com/dotnet/corefx 这个是.net core的 开源项目地址 https://github.com/aspnet 这个下面是asp.net core 框架 ...