梯度下降法的原理,本文不再描述,请参阅其它资料。

梯度下降法函数function [k ender]=steepest(f,x,e),需要三个参数f、x和e,其中f为目标函数,x为初始点,e为终止误差。输出也为两个参数,k表示迭代的次数,ender表示找到的最低点。

steepest.m:

function [k ender]=steepest(f,x,e)
%梯度下降法,f为目标函数(两变量x1和x2),x为初始点,如[3;4]
syms x1 x2 m; %m为学习率
d=-[diff(f,x1);diff(f,x2)]; %分别求x1和x2的偏导数,即下降的方向
flag=1; %循环标志
k=0; %迭代次数
while(flag)
d_temp=subs(d,x1,x(1)); %将起始点代入,求得当次下降x1梯度值
d_temp=subs(d_temp,x2,x(2)); %将起始点代入,求得当次下降x2梯度值
nor=norm(d_temp); %范数
if(nor>=e)
x_temp=x+m*d_temp; %改变初始点x的值
f_temp=subs(f,x1,x_temp(1)); %将改变后的x1和x2代入目标函数
f_temp=subs(f_temp,x2,x_temp(2));
h=diff(f_temp,m); %对m求导,找出最佳学习率
m_temp=solve(h); %求方程,得到当次m
x=x+m_temp*d_temp; %更新起始点x
k=k+1;
else
flag=0;
end
end
ender=double(x); %终点
end

调用示例1:

syms x1 x2;
f=(x1-2)^2+2*(x2-1)^2;
x=[1;3];
e=10^(-20);
[k ender]=steepest(f,x,e)

结果:

k =

    27

ender =

     2
1

调用示例2:

syms x1 x2;
f=x1-x2+2*x1^2+2*x1*x2+x2^2;
x=[0;0];
e=10^(-20);
[k ender]=steepest(f,x,e)

结果:

k =

    58

ender =

   -1.0000
1.5000

调用示例3:

syms x1 x2;
f=3/2*x1^2+1/2*x2^2-x1*x2-2*x1;
x=[0;0];
e=10^(-2);
[k ender]=steepest(f,x,e)

结果:

k =

     9

ender =

    0.9959
0.9877

在matlab中实现梯度下降法的更多相关文章

  1. 2.9 logistic回归中的梯度下降法(非常重要,一定要重点理解)

    怎么样计算偏导数来实现logistic回归的梯度下降法 它的核心关键点是其中的几个重要公式用来实现logistic回归的梯度下降法 接下来开始学习logistic回归的梯度下降法 logistic回归 ...

  2. [机器学习] ML重要概念:梯度(Gradient)与梯度下降法(Gradient Descent)

    引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课 ...

  3. (3)梯度下降法Gradient Descent

    梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...

  4. <反向传播(backprop)>梯度下降法gradient descent的发展历史与各版本

    梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hin ...

  5. 梯度下降法的python代码实现(多元线性回归)

    梯度下降法的python代码实现(多元线性回归最小化损失函数) 1.梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向 ...

  6. 梯度下降法求解函数极大值-Matlab

    目录 目录题目作答1. 建立函数文件ceshi.m2. 这是调用的命令,也可以写在.m文件里3. 输出结果题外话 题目 作答 本文使用MATLAB作答 1. 建立函数文件ceshi.m functio ...

  7. 机器学习中梯度下降法原理及用其解决线性回归问题的C语言实现

    本文讲梯度下降(Gradient Descent)前先看看利用梯度下降法进行监督学习(例如分类.回归等)的一般步骤: 1, 定义损失函数(Loss Function) 2, 信息流forward pr ...

  8. 如何选择梯度下降法中的学习速率α(Gradient Descent Learning Rate Alpha)

    梯度下降算法的任务是寻找参数θ,使之能够最小化损失函数. 那么梯度下降法中的学习速率α应该如何选择呢?通常我们画出损失函数随迭代次数增加而变化的曲线. 可能会得到如下的一条曲线,x轴表示迭代次数,y轴 ...

  9. sklearn中实现随机梯度下降法(多元线性回归)

    sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系 ...

随机推荐

  1. Verilog中的阻塞与非阻塞

    这篇文档值得阅读 按说阻塞与非阻塞是Verilog中最基本的东西,也是老生常谈.但是最近看到很多程序里用到阻塞语句竟然不是很明白,说到底是从来没有自己仔细分析过.当然一般情况程序中也是推荐用非阻塞的. ...

  2. FPGA之初认识

    什么是FPGA FPGA(Field-Programmable Gate Array),即现场可编程门阵列 .看到编程两个字码农就笑了,不就是编程嘛,那可是我们的强项 .且慢,此编程非彼编程 .一定要 ...

  3. 一份不太简短的LaTeX模板

    编译环境: Ubuntu16.04 texllive2016 sublime text3 + latextools 该模板使用与自己写文档,记笔记,记录代码,写作业等等. %!TEX program ...

  4. 声笔飞码GB2312单字效率分析

    -----------------------声笔飞码强字方式单字效率分析-------------------------- 2   keys: 567       items, 381900209 ...

  5. Eclipse新建工作空间,复制原有的配置

    步骤一: File->Switch workspace->Other...,按下图选择 只复制简单的配置,如cvs之类的信息是不会复制的.     步骤二: 在方法一的基础上做如下操作  ...

  6. Oracle EBS R12 XML数据表格的Excel脚本报表

    http://www.cnblogs.com/quanweiru/archive/2012/07/28/2612680.html 一.概述 在EBS系统中,报表是一个非常重要的客户化开发内容,也是系统 ...

  7. Python 中的深拷贝和浅拷贝

    一.浅拷贝python中 对象赋值时 默认是浅拷贝,满足如下规律:1. 对于 不可变对象(字符串,元组 等),赋值 实际上是创建一个新的对象:例如: >>> person=['nam ...

  8. C# .NET 获取枚举值的自定义属性

    一.定义一个类 using System; using System.Collections.Generic; using System.Linq; using System.Text; using ...

  9. SignalR 2 入门

    在本教程中使用的软件版本 Visual Studio 2015 .NET 4.5 SignalR 版本 2 概述 本教程介绍了通过演示如何生成简单的基于浏览器的聊天应用程序的 SignalR 开发. ...

  10. 介绍 Scratch 3.0:扩展编码创造力

    在过去十年中,全世界数百万儿童使用Scratch编写自己的互动游戏,故事,动画等. 这种磅礴的创造力激励我们继续扩展和改进Scratch,让世界各地的孩子都有新的机会用新技术创造性地表达自己. 今天, ...