Description

有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

输入包含多组数据。
    输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2
4 4 3
10 10 5

Sample Output

20
148

HINT

1 < =N.m < =10^5  , 1 < =Q < =2×10^4

【思路】

  UPD:求a只和F(1..a)有关系改为:求a只和F(i)<=a的项有关系

  自然溢出,最后and 2^31-1

【代码】

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N = 1e5+; struct Node {
int n,m,a,id;
bool operator< (const Node& rhs) const{
return a<rhs.a;
}
};
struct Fnode{
int num,id;
bool operator<(const Fnode& rhs) const{
return num<rhs.num;
}
}; int mx,n,m,a;
int mu[N],su[N],sz,np[N],C[N],ans[N];
Node que[N]; Fnode F[N]; void add(int x,int v)
{
for(;x<=mx;x+=x&-x) C[x]+=v;
}
int query(int x)
{
int res=;
for(;x;x-=x&-x) res+=C[x];
return res;
} void get_mu()
{
int i,j;
mu[]=;
for(i=;i<=mx;i++) {
if(!np[i])
mu[i]=-,su[++sz]=i;
for(j=;j<=sz&&i*su[j]<=mx;j++) {
np[i*su[j]]=;
if(i%su[j]==)
mu[i*su[j]]=;
else
mu[i*su[j]]=-mu[i];
}
}
}
void get_F()
{
int i,j;
for(i=;i<=mx;i++) {
for(j=i;j<=mx;j+=i)
F[j].num+=i;
}
for(i=;i<=mx;i++) F[i].id=i;
} int main()
{
int T;
scanf("%d",&T);
for(int i=;i<=T;i++) {
scanf("%d%d%d",&n,&m,&a);
if(n>m) swap(n,m);
que[i]=(Node){n,m,a,i};
mx=max(mx,n);
}
get_mu(); get_F();
sort(que+,que+T+);
sort(F+,F+mx+);
int now=;
for(int i=;i<=T;i++) {
while(now+<=mx&&F[now+].num<=que[i].a) {
now++;
for(int j=F[now].id;j<=mx;j+=F[now].id)
add(j,F[now].num*mu[j/F[now].id]);
}
int id=que[i].id,last; n=que[i].n,m=que[i].m;
for(int j=;j<=n;j=last+) {
last=min(n/(n/j),m/(m/j));
ans[id]+=(query(last)-query(j-))*(n/j)*(m/j);
}
}
for(int i=;i<=T;i++)
printf("%d\n",ans[i]&0x7fffffff);
return ;
}

bzoj 3529 [Sdoi2014]数表(莫比乌斯反演+BIT)的更多相关文章

  1. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  2. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  3. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  4. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  5. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  6. ●BZOJ 3529 [Sdoi2014]数表

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3529 题解: 莫比乌斯反演. 按题目的意思,令$f(i)$表示i的所有约数的和,就是要求: ...

  7. BZOJ[Sdoi2014]数表 莫比乌斯反演

    [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2383  Solved: 1229[Submit][Status][Disc ...

  8. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  9. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  10. 【刷题】BZOJ 3529 [Sdoi2014]数表

    Description 有一张n×m的数表,其第i行第j列(1<=i<=n,1<=j<=m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. In ...

随机推荐

  1. 团队软件开发_基于windows下截屏软件关于NABC框架的特点

    经过我们小组数次的激烈讨论,就自己的能力和时间而言,我们小组的初步的计划是开发一款基于windows下的截图软件. 关于这个软件的功能,我们初步的想法如下: 1.能在windows下后台运行,有相应的 ...

  2. EasyUI Datagrid 取编辑修改后的内容

    <script type="text/javascript"> $(function () { $('#tt').datagrid({ iconCls: 'icon-e ...

  3. SDK更新问题解决

    更新C:\WINDOWS\system32\drivers\etc\host文件百试不爽 第一步 打开SDK Manager下Tools->Options,选中“Force https://… ...

  4. spoj 390

    简单题  记得uva上有个一样的  画个图就好了 #include <cstdio> #include <cmath> const double pi = acos(-1); ...

  5. 进阶:使用 EntityManager

    JPA中要对数据库进行操作前,必须先取得EntityManager实例,这有点类似JDBC在对数据库操作之前,必须先取得Connection实例,EntityManager是JPA操作的基础,它不是设 ...

  6. cf 148D 概率DP

    题意:原来袋子里有w只白鼠和b只黑鼠龙和王妃轮流从袋子里抓老鼠.谁先抓到白色老师谁就赢.王妃每次抓一只老鼠,龙每次抓完一只老鼠之后会有一只老鼠跑出来.每次抓老鼠和跑出来的老鼠都是随机的.如果两个人都没 ...

  7. ExtJS4 MVC开发教程:搭建开发环境

    原文地址:http://www.lihuai.net/qianduan/extjs/864.html 博主系列教程:http://www.lihuai.net/qianduan/extjs 在所有的J ...

  8. 李洪强iOS开发之XMPP

      XMPP历史 这个xmpp框架在2008年开始,不过是一个简单地RFC实现.提供一个最小的代理去接受三种xmpp的基本类型presence.message.iq.因为framwork只提供了最小的 ...

  9. 基于ASP.NET的comet简单实现

    http://www.cnblogs.com/hanxianlong/archive/2010/04/27/1722018.html 我潜水很多年,今天忽然出现.很久没写过博客了,不是因为不想写,而是 ...

  10. java去除重复的字符串和移除不想要的字符串

    在java开发中碰到了有些字符串是重复的,如果在进行业务处理要全部遍历太对的数据就会重复,所以在进行业务处理前进行一个去重操作. 这里由于业务需要所以先将字符串转化为string数组,使用split分 ...