bzoj 3529 [Sdoi2014]数表(莫比乌斯反演+BIT)
Description
有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。
Input
输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。
Output
对每组数据,输出一行一个整数,表示答案模2^31的值。
Sample Input
4 4 3
10 10 5
Sample Output
148
HINT
1 < =N.m < =10^5 , 1 < =Q < =2×10^4
【思路】

UPD:求a只和F(1..a)有关系改为:求a只和F(i)<=a的项有关系
自然溢出,最后and 2^31-1
【代码】
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N = 1e5+; struct Node {
int n,m,a,id;
bool operator< (const Node& rhs) const{
return a<rhs.a;
}
};
struct Fnode{
int num,id;
bool operator<(const Fnode& rhs) const{
return num<rhs.num;
}
}; int mx,n,m,a;
int mu[N],su[N],sz,np[N],C[N],ans[N];
Node que[N]; Fnode F[N]; void add(int x,int v)
{
for(;x<=mx;x+=x&-x) C[x]+=v;
}
int query(int x)
{
int res=;
for(;x;x-=x&-x) res+=C[x];
return res;
} void get_mu()
{
int i,j;
mu[]=;
for(i=;i<=mx;i++) {
if(!np[i])
mu[i]=-,su[++sz]=i;
for(j=;j<=sz&&i*su[j]<=mx;j++) {
np[i*su[j]]=;
if(i%su[j]==)
mu[i*su[j]]=;
else
mu[i*su[j]]=-mu[i];
}
}
}
void get_F()
{
int i,j;
for(i=;i<=mx;i++) {
for(j=i;j<=mx;j+=i)
F[j].num+=i;
}
for(i=;i<=mx;i++) F[i].id=i;
} int main()
{
int T;
scanf("%d",&T);
for(int i=;i<=T;i++) {
scanf("%d%d%d",&n,&m,&a);
if(n>m) swap(n,m);
que[i]=(Node){n,m,a,i};
mx=max(mx,n);
}
get_mu(); get_F();
sort(que+,que+T+);
sort(F+,F+mx+);
int now=;
for(int i=;i<=T;i++) {
while(now+<=mx&&F[now+].num<=que[i].a) {
now++;
for(int j=F[now].id;j<=mx;j+=F[now].id)
add(j,F[now].num*mu[j/F[now].id]);
}
int id=que[i].id,last; n=que[i].n,m=que[i].m;
for(int j=;j<=n;j=last+) {
last=min(n/(n/j),m/(m/j));
ans[id]+=(query(last)-query(j-))*(n/j)*(m/j);
}
}
for(int i=;i<=T;i++)
printf("%d\n",ans[i]&0x7fffffff);
return ;
}
bzoj 3529 [Sdoi2014]数表(莫比乌斯反演+BIT)的更多相关文章
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
- BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)
题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...
- BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组
$ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...
- BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2321 Solved: 1187[Submit][Status ...
- bzoj [SDOI2014]数表 莫比乌斯反演 BIT
bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...
- ●BZOJ 3529 [Sdoi2014]数表
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3529 题解: 莫比乌斯反演. 按题目的意思,令$f(i)$表示i的所有约数的和,就是要求: ...
- BZOJ[Sdoi2014]数表 莫比乌斯反演
[Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2383 Solved: 1229[Submit][Status][Disc ...
- 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组
[BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...
- bzoj3529: [Sdoi2014]数表 莫比乌斯反演
题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...
- 【刷题】BZOJ 3529 [Sdoi2014]数表
Description 有一张n×m的数表,其第i行第j列(1<=i<=n,1<=j<=m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. In ...
随机推荐
- Extjs-4.2.1(一)——编辑 hello word
前言:在搭建好环境后,就可以利用Extjs进行开发了. 一.在项目中拷贝相关的Extjs文件,如下图: 注意:不需要整个Ext开发包全部导入,这样很容易造成eclipse卡死,因为eclipse会自动 ...
- 你不需要jQuery
http://www.webhek.com/you-do-not-need-jquery
- PAT-乙级-1042. 字符统计(20)
1042. 字符统计(20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 请编写程序,找出一段给定文字中出现最 ...
- pythn BeautifulSoup
http://rsj217.diandian.com/post/2012-11-01/40041235132 Beautiful Soup 是用 Python 写的一个 HTML/XML 的解析器,它 ...
- Nagios Apache报Internal Server Error错误的解决方法
今天配置Nagios的时候遇到了一些麻烦,前面的步骤都一切顺利,nagios运行后,可以看到nagios的主页,但点击左边的菜单时总是提示Internal Server Error错误.错误如下: v ...
- jvisualvm 使用
和jconsole侧重于内存分析和检测不同,jvisualvm在线程分析方面更强大一些,下面简单介绍下使用: 1. 在要监控的java应用配置文件中,本例是apache-jmeter/bin/jmet ...
- 【BZOJ 2618】 2618: [Cqoi2006]凸多边形 (半平面交)
2618: [Cqoi2006]凸多边形 Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input 第一 ...
- SaaS系列介绍之三: SaaS的特性与作用
1 SaaS的特性 最早的SaaS服务之一当属在线电子邮箱,极大地降低了个人与企业使用电子邮件的门槛,进而改变了人与人.企业与企业之间的沟通方式.发展至今,SaaS服务的种类与产品已经非常丰富,面向个 ...
- mybatis的知识点总结
1.接口绑定:两种方法,基于注解或者基于xml文档mapper,但要注意mapper的namespace要与接口路径完全一致. 2.orm格式转换:通过设置resultMap和ResultType,将 ...
- SGU111 Very simple problem
多少个平方数小于等于X,二分. PS:java BigInteger. import java.util.*; import java.math.*; public class Solution { ...