题目描述

给出一个长度为 $2^n$ 的序列,编号从0开始。每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数。求 $t$ 次操作后序列中的每个数是多少。

输入

第一行两个正整数 n , t,意义如题。
第二行 2^n 个非负整数,第 i 个数表示编号为 i-1 的城市的初始货物存储量。
n<=20  t<=10^9

输出

输出一行 2^n 个非负整数。

第 i 个数表示过了 t 天后,编号为 i-1 的城市上的货物数量对 1e9+7 取模的结果。

样例输入

3 2
1 2 3 4 5 6 7 8

样例输出

58 62 66 70 74 78 82 86


题解

FWT+快速幂

显然构建 $b$ 数组,其中 $b[0]=1$ ,$b[2^i]=1$ ,其余为 $0$ ,那么原序列 $a$ 经过一次操作后得到的新序列就是 $a\oplus b$ ,其中 $\oplus$ 表示两个数组的异或卷积。

于是就好办了,先求出 $a[]$ 和 $b[]$ 的FWT,然后直接按位计算 $c[i]=a[i]*b[i]^t$ ,再求逆fwt即可。

时间复杂度 $O(2^n·n)$

注意本题卡常,因此必须加读入优化和输出优化。

#include <cstdio>
#include <cctype>
#define N 1050000
#define mod 1000000007
typedef long long ll;
ll a[N] , b[N];
inline char nc()
{
static char buf[100000] , *p1 , *p2;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf , 1 , 100000 , stdin) , p1 == p2) ? EOF : *p1 ++ ;
}
inline int read()
{
int ret = 0; char ch = nc();
while(!isdigit(ch)) ch = nc();
while(isdigit(ch)) ret = ((ret + (ret << 2)) << 1) + (ch ^ '0') , ch = nc();
return ret;
}
char pbuf[15000000] , *pp = pbuf;
inline void write(ll x)
{
static int sta[12];
int top = 0;
if(!x) *pp ++ = '0';
while(x) sta[top ++ ] = x % 10 , x /= 10;
while(top -- ) *pp ++ = sta[top] ^ '0';
*pp ++ = ' ';
}
ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
void fwt(ll *a , int n , int flag)
{
int i , j , k , t;
for(i = 1 ; i < n ; i <<= 1)
for(j = 0 ; j < n ; j += (i << 1))
for(k = j ; k < j + i ; k ++ )
t = a[k] , a[k] = (t + a[k + i]) * flag % mod , a[k + i] = (t - a[k + i] + mod) * flag % mod;
}
int main()
{
int n = 1 << read() , m = read() , i;
for(i = 0 ; i < n ; i ++ ) a[i] = read();
b[0] = 1;
for(i = 1 ; i < n ; i <<= 1) b[i] = 1;
fwt(a , n , 1) , fwt(b , n , 1);
for(i = 0 ; i < n ; i ++ ) a[i] = a[i] * pow(b[i] , m) % mod;
fwt(a , n , 500000004);
for(i = 0 ; i < n ; i ++ ) write(a[i]);
fwrite(pbuf , 1 , pp - pbuf , stdout);
return 0;
}

【51Nod1773】A国的贸易 FWT+快速幂的更多相关文章

  1. 51nod1773 A国的贸易

    基准时间限制:2 秒 空间限制:524288 KB 分值: 40  A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们 ...

  2. 【bzoj4589】Hard Nim FWT+快速幂

    题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$.其中,$n≤10^9,m≤10^5$. 考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$ ...

  3. BZOJ4589: Hard Nim(FWT 快速幂)

    题意 题目链接 Sol 神仙题Orzzzz 题目可以转化为从\(\leqslant M\)的质数中选出\(N\)个\(xor\)和为\(0\)的方案数 这样就好做多了 设\(f(x) = [x \te ...

  4. bzoj 4589: Hard Nim【线性筛+FWT+快速幂】

    T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...

  5. 51Nod1773 A国的贸易 多项式 FWT

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1773.html 题目传送门 - 51Nod1773 题意 给定一个长度为 $2^n$ 的序列,第 $ ...

  6. BZOJ4589 Hard Nim FWT 快速幂 博弈

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4589.html 题目传送门 - BZOJ4589 题意 有 $n$ 堆石子,每一堆石子的取值为 $2$ ...

  7. 【51Nod1773】A国的贸易 解题报告

    [51Nod1773]A国的贸易 Description 给出一个长度为 \(2^n\) 的序列,编号从\(0\)开始.每次操作后,如果 \(i\) 与 \(j\) 的二进制表示只差一位则第 \(i\ ...

  8. BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...

  9. #1560 : H国的身份证号码II(dp+矩阵快速幂)

    #1560 : H国的身份证号码II 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 H国的身份证号码是一个N位的正整数(首位不能是0).此外,由于防伪需要,一个N位正整 ...

随机推荐

  1. day 1 异常基本功能

    1.什么是异常?程序出现的错误 In [1]: open('xxx.txt') ------------------------------------------------------------ ...

  2. day1 Ubuntu 使用

    ctrl + shift + +   放大终端 ctrl + -   缩小终端 软连接,硬链接   ln python@ubuntu:~/Desktop$ vim .txt python@ubuntu ...

  3. [css 实践篇]CSS中的尺寸单位

    绝对单位 px: Pixel 像素 pt: Points 磅 pc: Picas 派卡 in: Inches 英寸 mm: Millimeter 毫米 cm: Centimeter 厘米 q: Qua ...

  4. Struts 2(八):文件上传

    第一节 基于Struts 2完成文件上传 Struts 2框架中没有提供文件上传,而是通过Common-FileUpload框架或COS框架来实现的,Struts 2在原有上传框架的基础上进行了进一步 ...

  5. JS 判断checkbox 是否选中

    <input type="checkbox" id="IsEnable" /> 在调试的时候,会出现,一直未true的状态,不管是选中还是未选中 解 ...

  6. Python中的内建函数(Built_in Funtions)

    前言 在Python官方文档的标准库章节中,第一节是简介,第二节就是Built_in Functions,可见内建函数是Python标准库的重要组成部分,而有很多内建函数我们平时却很少用到或根本就不知 ...

  7. 一学就会pip换镜像源

    首先介绍一个国内好用的镜像站 阿里云 http://mirrors.aliyun.com/pypi/simple/ 豆瓣 http://pypi.douban.com/simple/ 清华大学 htt ...

  8. 001 -js对时间日期的排序

    001-JS对时间日期的排序 最近在做公司的项目时间,产品给了一个很简单的页面,让帮忙写一下.首先看一下产品的需求: 需要对该列表进行排序 思路:(1)可以在数据库写sql语句的时间直接一个DESC按 ...

  9. Qt creator 最常用的13个快捷键

    alt +enter // 自动创建类的定义 F1 // 查看帮助,文档 F2 // 快速到变量声明 Shift + F2 // 函数的声明和定义之间快速切换 F4 // 在 cpp 和 h 文件切换 ...

  10. POJ 3579 Median 二分加判断

    Median Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12453   Accepted: 4357 Descripti ...