python 可视化 词云图

我的代码:
# -*- coding: utf-8 -*-
from pandas import read_csv
import numpy as np
from sklearn.datasets.base import Bunch
import pickle # 导入cPickle包并且取一个别名pickle #持久化类
from sklearn.feature_extraction.text import TfidfVectorizer
import jieba
import operator # 排序用
from sklearn import metrics
from sklearn.externals import joblib
import xlwt
#导入wordcloud模块和matplotlib模块
import wordcloud
import matplotlib.pyplot as plt
from scipy.misc import imread '''读取停用词'''
def _readfile(path):
with open(path, "rb") as fp:
content = fp.read()
return content ''' 读取bunch对象''' def _readbunchobj(path):
with open(path, "rb") as file_obj:
bunch = pickle.load(file_obj)
return bunch '''写入bunch对象''' def _writebunchobj(path, bunchobj):
with open(path, "wb") as file_obj:
pickle.dump(bunchobj, file_obj) def buildtestbunch(bunch_path, art_test):
bunch = Bunch(contents=[])#label=[],
# =============================================================================
# for item1 in testlabel:
# bunch.label.append(item1)
# ============================================================================= # testContentdatasave=[] #存储所有训练和测试数据的分词
for item2 in art_test:
item2 = str(item2)
item2 = item2.replace("\r\n", "")
item2 = item2.replace(" ", "")
content_seg = jieba.cut(item2)
save2 = ''
for item3 in content_seg:
if len(item3) > 1 and item3 != '\r\n':
# testContentdatasave.append(item3)
save2 = save2 + "," + item3
bunch.contents.append(save2)
with open(bunch_path, "wb") as file_obj:
pickle.dump(bunch, file_obj)
print("构建测试数据文本对象结束!!!") def vector_space(stopword_path, bunch_path, space_path):
stpwrdlst = _readfile(stopword_path).splitlines() # 读取停用词
bunch = _readbunchobj(bunch_path) # 导入分词后的词向量bunch对象
# 构建tf-idf词向量空间对象
tfidfspace = Bunch(label=bunch.label, tdm=[], vocabulary={}) # 权重矩阵tdm,其中,权重矩阵是一个二维矩阵,tdm[i][j]表示,第j个词(即词典中的序号)在第i个类别中的IF-IDF值 # 使用TfidVectorizer初始化向量空间模型
vectorizer = TfidfVectorizer(stop_words=stpwrdlst, sublinear_tf=True, max_df=0.5, min_df=0.0001, use_idf=True,
max_features=15000)
# print(vectorizer)
# 文本转为词频矩阵,单独保存字典文件
tfidfspace.tdm = vectorizer.fit_transform(bunch.contents)
tfidfspace.vocabulary = vectorizer.vocabulary_
# 创建词袋的持久化
_writebunchobj(space_path, tfidfspace)
print("if-idf词向量空间实例创建成功!!!") def testvector_space(stopword_path, bunch_path, space_path, train_tfidf_path):
stpwrdlst = _readfile(stopword_path).splitlines() # 把停用词变成列表
bunch = _readbunchobj(bunch_path)
tfidfspace = Bunch(tdm=[], vocabulary={})#label=bunch.label,
# 导入训练集的TF-IDF词向量空间 ★★
trainbunch = _readbunchobj(train_tfidf_path)
tfidfspace.vocabulary = trainbunch.vocabulary vectorizer= TfidfVectorizer(stop_words=stpwrdlst, sublinear_tf=True, max_df=0.7, vocabulary=trainbunch.vocabulary,
min_df=0.001) tfidfspace.tdm = vectorizer.fit_transform(bunch.contents)
_writebunchobj(space_path, tfidfspace)
print("if-idf词向量空间实例创建成功!!!") if __name__=="__main__": Sdata = []
art = []
'''============================先导入数据=================================='''
file_test = 'F:/goverment/text analyse/type_in.csv' dataset = read_csv(file_test)
Sdata = dataset.values[:, :]
Sdata=Sdata.tolist()
for line in Sdata:
art.append(line[1])#line[1]为文本
print(len(Sdata)) '''==========================================================tf-idf对Bar进行文本特征提取============================================================================'''
# 导入分词后的词向量bunch对象
test_bunch_path = "F:/goverment/text analyse/trainbunch.bat"
test_space_path = "F:/goverment/text analyse/traintfdifspace.dat"
stopword_path = "F:/goverment/text analyse/hlt_stop_words.txt" '''============================================================tf-idf对Sart进行文本特征提取==============================================================================''' buildtestbunch(test_bunch_path, art) testvector_space(stopword_path, test_bunch_path, test_space_path, test_space_path) test_set = _readbunchobj(test_space_path) '''测试数据''' #获取已知 id 找 文本
txtcut=[] #存放所有词
dic={}
for i in test_set.vocabulary.keys():
txtcut.append(i)
dic[test_set.vocabulary[i]]=i #print(dic) #print(test_set.tdm)
#print(test_set.tdm[0])
#print(dir(test_set))
#print(test_set.vocabulary)
#print(dir(test_set.tdm)) #print(Sdata) #print(nonzero[1]) '''final里放的是不超过15的词'''
#print(Sdata)
final=[]
for k in range(len(Sdata)):#遍历每一条文本
nonzero=test_set.tdm[k].nonzero()
ls=[]
ls.append(Sdata[k][0])
num=0
for i in range(len(nonzero[1])):
num=num+1
b=test_set.tdm[k, nonzero[1][i]]*100 #test_set.tdm[k, nonzero[1][i]]是第k条文本中,第i个权重非零的词权重
a= dic[nonzero[1][i]] +" "+str(round(b,2))+"%"
ls.append(a)
if num==15:
break
final.append(ls) '''画词云图'''
fig = plt.figure(figsize = (15,15))
cloud = wordcloud.WordCloud(font_path='STXINGKA.TTF',mask=imread('water3.png'),mode='RGBA',
background_color=None).generate(' '.join(txtcut))
img = imread('water3.png')
cloud_colors = wordcloud.ImageColorGenerator(np.array(img))
cloud.recolor(color_func=cloud_colors)
plt.imshow(cloud)
plt.axis('off')
plt.savefig('watercloud3.png',dpi=400)
plt.show() myexcel = xlwt.Workbook()
sheet = myexcel.add_sheet("sheet1")
si=-1
sj=-1
for line in final:
si=si+1
sj=-1
for i in line:
sj=sj+1
sheet.write(si,sj,str(i)) myexcel.save("各条分词.xls") #把id存好
myexcel = xlwt.Workbook()
sheet = myexcel.add_sheet("sheet2")
p=0
for i in test_set.vocabulary.keys():
sheet.write(p,0,i)
print(i)
sheet.write(p,1,str(test_set.vocabulary[i]))
p=p+1 myexcel.save("词汇id.xls")
各条分词:

词汇id:

python 可视化 词云图的更多相关文章
- python 数据分析--词云图,图形可视化美国竞选辩论
这篇博客从用python实现分析数据的一个完整过程.以下着重几个python的moudle的运用"pandas",""wordcloud"," ...
- python爬虫+词云图,爬取网易云音乐评论
又到了清明时节,用python爬取了网易云音乐<清明雨上>的评论,统计词频和绘制词云图,记录过程中遇到一些问题 爬取网易云音乐的评论 一开始是按照常规思路,分析网页ajax的传参情况.看到 ...
- python 绘制词云图
1. 先下载并安装nltk包,准备一张简单的图片存入代码所在文件目录,搜集英文停用词表 import nltk nltk.download() 2. 绘制词云图 import re import nu ...
- python 做词云图
#导入需要模块 import jieba import numpy as np import matplotlib.pyplot as plt from PIL import Image from w ...
- python词云图与中文分词
2019-12-12中文文本分词和词云图具体功能介绍与学习代码: import jiebaa="由于中文文本的单词不是通过空格或者标点符号来进行分割"#jieba.lcut()s是 ...
- (数据科学学习手札71)在Python中制作个性化词云图
本文对应脚本及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 词云图是文本挖掘中用来表征词频的数据可视化 ...
- python 爬取豆瓣电影短评并wordcloud生成词云图
最近学到数据可视化到了词云图,正好学到爬虫,各种爬网站 [实验名称] 爬取豆瓣电影<千与千寻>的评论并生成词云 1. 利用爬虫获得电影评论的文本数据 2. 处理文本数据生成词云图 第一步, ...
- 用Python制作酷炫词云图,原来这么简单!
一.简介词云图是文本挖掘中用来表征词频的数据可视化图像,通过它可以很直观地展现文本数据中地高频词:! 图1 词云图示例 在Python中有很多可视化框架可以用来制作词云图,如pyecharts,但这些 ...
- 特朗普退出《巴黎协定》:python词云图舆情分析
1 前言 2017年6月1日,美国特朗普总统正式宣布美国退出<巴黎协定>.宣布退出<巴黎协定>后,特朗普似乎成了“全球公敌”. 特斯拉总裁马斯克宣布退出总统顾问团队 迪士尼董事 ...
随机推荐
- SRM 585 DIV2
250pt: 一水... 500pt:题意: 给你一颗满二叉树的高度,然后找出出最少的不想交的路径并且该路径每个节点只经过一次. 思路:观察题目中给的图就会发现,其实每形成一个 就会存在一条路径. 我 ...
- python 字符串压缩
import zlib s = b'witch which has which witches wrist watch' print(len(s)) t = zlib.compress(s) prin ...
- css3伪放大镜(图片放大动画)效果(鼠标移入圆形区域放大图片)
源码: <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8&q ...
- hdu2516斐波那契博弈
刚开始想用sg函数做,想了半天没一点思路啊. 原来这是一个新题型,斐波那契博弈 斐波那契博弈模型:有一堆个数为 n 的石子,游戏双方轮流取石子,满足:1. 先手不能在第一次把所有的石子取完:2. 之后 ...
- sqlplus中文问号
添加两个环境变量后重启. 1.LANG=zh_CN.GBK(GBK是这样形式的,不同编码这里的value值需要跟着改变) 2.NLS_LANG=AMERICAN_AMERICA.ZHS16GBK(这个 ...
- bzoj-1009-dp+kmp处理转移矩阵幂
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4723 Solved: 2940[Submit][Statu ...
- UVA-12166 Equilibrium Mobile(二叉树)
题目大意:改变二叉树上的权值,使树平衡,问最少该几个值. 题目分析:不会做,查的题解.有条奇妙的性质:如果将第d层权值为w的节点为基准做改动,则整棵树的总重量为w<<d,即w*2^d.仔细 ...
- UEFI下windows启动过程
引导文件 在UEFI安装完操作系统后,Windows至少使用两个分区,一个叫做ESP分区(EFI SYSTEM PARTITION),用于存放启动文件,另一个则是BIOS下正常的系统分区,不同的是,B ...
- 卸载oracle11g步骤图解
卸载oracle11g步骤图解 重启电脑即可
- LocalStorage漏洞分析
之前LocalStorage爆出过一个漏洞,使用Chrome打开这个网站:http://filldisk.com,会将磁盘空间给撑爆,而且Chrome还会Crash.除了FireFox之外,其他浏览器 ...