【BZOJ 3876】【AHOI 2014】支线剧情
http://www.lydsy.com/JudgeOnline/problem.php?id=3876
这道题每条支线的意思是每条边。。。
那么每条边的下界设为1就行了。
这样建出一个DAG,每条边下界为1,上界为正无穷,赋上费用。设1为S。所有点向T连边,下界为0,上界为正无穷,费用为0,表示可以随时退出。答案是这个图中的最小费用可行流。
最小费用可行流怎么求啊!
可行流什么的我只会求无源汇的。
想了好半天才明白该怎么做。。。
抛弃原来的建图,还是建出一个DAG,每条边下界为1,上界为正无穷,赋上费用。所有非1的点都向1连一条下界为0上界无穷费用为0的边,表示可以随时退出回到1点。
这样就是无源汇的啦!
我们要求这个新的图(附加网络)的最小费用可行流。
可行流我会求(套模板),设超级源S和超级汇T,每个点的入点下界和减去出点下界和,记为di。如果di小于0,从i连边向T,容量为-di;如果di大于0,从S连边向i,容量为di(都是模板的内容~)
从超级源到超级汇跑最大流,跑出来的就是可行流减去下界的流量。因为题意,所以肯定有解;又因为是DAG,所以可行流就是最小流。
如果要求最小费用可行流?不断spfa增广就可以实现最小费用了!
这样对于一条边的流量f=d+g,f为可行流的流量,d为下界,g为附加网络中实际的流量。
求出的最小费用是\(\sum_{i∈E}g_i*w_i\),并不是我们想要的f!
怎么办呢?因为所有的d一定会流满,所以直接加上\(\sum_{i∈E}d_i*w_i\)即可!(我好蠢啊,想了一晚上)
附赠样例图示:
6
2 2 1 3 2
2 4 3 5 4
2 5 5 6 6
0
0
0
附加网络是介个样子的:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 333;
const int M = N * N;
const int inf = 0x7fffffff;
struct node {
int nxt, to, c, w, from;
} E[M];
int cnt = 1, point[N];
void ins(int u, int v, int c, int w) {
E[++cnt] = (node) {point[u], v, c, w, u}; point[u] = cnt;
E[++cnt] = (node) {point[v], u, 0, -w, v}; point[v] = cnt;
}
bool inq[N];
int dist[N], pre[N], q[N];
bool spfa(int s, int t) {
for (int i = 1; i <= t; ++i) dist[i] = inf;
int head = 0, tail = 1, u, v, tt;
dist[s] = 0; inq[s] = true; q[1] = s;
while (head != tail) {
++head; if (head == N) head = 0;
u = q[head]; inq[u] = false;
for (int i = point[u]; i; i = E[i].nxt)
if (E[i].c && dist[v = E[i].to] > (tt = dist[u] + E[i].w)) {
dist[v] = tt; pre[v] = i;
if (!inq[v]) {
inq[v] = true;
++tail; if (tail == N) tail = 0;
q[tail] = v;
}
}
}
return dist[t] != inf;
}
int MCMF(int s, int t) {
int ret = 0;
while (spfa(s, t)) {
int f = inf, u;
for (u = t; u != s; u = E[pre[u]].from) f = min(f, E[pre[u]].c);
for (u = t; u != s; u = E[pre[u]].from) E[pre[u]].c -= f, E[pre[u] ^ 1].c += f;
ret += dist[t] * f;
}
return ret;
}
int n, du[N], S, T, ans = 0;
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
int tot, bi, ti; scanf("%d", &tot);
du[i] -= tot;
while (tot--) {
scanf("%d%d", &bi, &ti);
ins(i, bi, inf, ti);
++du[bi]; ans += ti;
}
if (i != 1) ins(i, 1, inf, 0);
}
S = n + 1; T = S + 1;
for (int i = 1; i <= n; ++i) {
if (du[i] > 0) ins(S, i, du[i], 0);
if (du[i] < 0) ins(i, T, -du[i], 0);
}
printf("%d\n", MCMF(S, T) + ans);
return 0;
}
QAQ终于写完了,那么接下来我们

【BZOJ 3876】【AHOI 2014】支线剧情的更多相关文章
- BZOJ 3876 [AHOI/JSOI2014]支线剧情 (最小费用可行流)
题面:洛谷传送门 BZOJ传送门 题目大意:给你一张有向无环图,边有边权,让我们用任意条从1号点开始的路径覆盖这张图,需要保证覆盖完成后图内所有边都被覆盖至少一次,求覆盖路径总长度的最小值 最小费用可 ...
- bzoj 3876: [Ahoi2014&Jsoi2014]支线剧情【有上下界有源汇最小费用最大流】
每条边流量有下界有费用,很显然是有上下界有源汇最小费用最大流 连边(s,1,(0,inf),0),(i,t,(0,inf),0),表示从1出发inf次从每个点结束inf次 连边(i,j,(1,inf) ...
- BZOJ 3876 [Ahoi2014&Jsoi2014]支线剧情
题解: 带下界的费用流 对于x->y边权为z Addedge(x,t,1,0) Addedge(s,y,1,z) Addedge(x,y,inf,0) 然后对每个点Addedge(i,1,inf ...
- BZOJ3876 AHOI/JSOI2014支线剧情(上下界网络流)
原图所有边下界设为1上界设为inf花费为时间,那么显然就是一个上下界最小费用流了.做法与可行流类似. 因为每次选的都是最短路增广,且显然不会有负权增广路,所以所求出来的可行流的费用就是最小的. #in ...
- BZOJ 3876 支线剧情 | 有下界费用流
BZOJ 3876 支线剧情 | 有下界费用流 题意 这题题面搞得我看了半天没看懂--是这样的,原题中的"剧情"指的是边,"剧情点"指的才是点. 题面翻译过来大 ...
- BZOJ 3876 支线剧情(有上下界的无源汇最小费用可行流)
3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec Memory Limit: 256 MB Submit: 1783 Solved: 1079 [Submit][St ...
- bzoj 3876 [Ahoi2014]支线剧情(有上下界的最小费用流)
3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 484 Solved: 296[Submit][Status ...
- BZOJ 3876: [Ahoi2014]支线剧情 [上下界费用流]
3876: [Ahoi2014]支线剧情 题意:每次只能从1开始,每条边至少经过一次,有边权,求最小花费 裸上下界费用流...每条边下界为1就行了 注意要加上下界*边权 #include <io ...
- BZOJ 3876: [Ahoi2014]支线剧情 带下界的费用流
3876: [Ahoi2014]支线剧情 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3876 Description [故事背景] 宅 ...
- BZOJ 3876:支线剧情(有下界最小费用最大流)
3876: [Ahoi2014]支线剧情 Description [故事背景]宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧 ...
随机推荐
- LINQ to SQL语句(8)之Concat/Union/Intersect/Except
适用场景:对两个集合的处理,例如追加.合并.取相同项.相交项等等. Concat(连接) 说明:连接不同的集合,不会自动过滤相同项:延迟. 1.简单形式: var q = ( from c in db ...
- Python input 使用
Python 3.0 中使用"input" , Python 2.0 中使用"raw_input"Python 3.5: #!C:\Program Files\ ...
- Json map
1. 返回数据形式 Class returnMsg{ boolean success; String msg; String errorMsg; } 2.问题 当msg中的数据由对象 或 集合 ...
- 利用Java动态生成 PDF 文档
利用Java动态生成 PDF 文档,则需要开源的API.首先我们先想象需求,在企业应用中,客户会提出一些复杂的需求,比如会针对具体的业务,构建比较典型的具备文档性质的内容,一般会导出PDF进行存档.那 ...
- java函数的笔记
java中,函数即方法.也就是实现某个功能的办法. 函数的格式 修饰符 返回值类型 函数名(参数类型 参数) { 逻辑处理; return 处理结果; // return关键字是用于结束该函数的,并将 ...
- ipad&mobile通用webapp框架前哨战
响应式设计的意义 随着移动设备的发展,移动设备以迅猛的势头分刮着PC的占有率,ipad或者android pad的市场占有率稳步提升,所以我们的程序需要在ipad上很好的运行,对于公司来说有以下负担: ...
- SharePoint如何将使列表不被爬网爬到。
有一个项目,没有对表单进行严格的权限管理,虽然用户在自己的首页只能看到属于的单子,但是在搜索的时候,所有人的单子都能被搜到,所以客户造成了困惑. 那么问题来了,怎么让列表或者文档库不被爬网爬到. 有两 ...
- WCF+Restfull服务 提交或获取数据时数据大小限制问题解决方案
近日在使用wcf的restfull架构服务时遭遇到了提交大数据的问题. 大数据包含两种情形: 1)单条数据量过大. 2)提交或获取的数据条数过多. 在测试时发现,默认设置下当单条JSON数据大于30K ...
- 在Android中,使用Kotlin的 API请求简易方法
原文标题:API request in Android the easy way using Kotlin 原文链接:http://antonioleiva.com/api-request-kotli ...
- React Native学习笔记之2
1:如何创建一个react native工程 首先进入到指定文件夹里面,然后在终端执行react-native init ReactNativeProject :其中ReactNativeProjec ...