图像的阈值处理

图像的阈值分割:图像的二值化(Binarization)

阈值分割法的特点是:适用于目标与背景灰度有较强对比的情况,重要的是背景或物体的灰度比较单一,而且总可以得到封闭且连通区域的边界。

一、简单阈值

选取一个全局阈值,然后把图像分成非黑即白的二值图像。

cv2.threshold()【源图像矩阵,进行分类的阈值,高于(低于)阈值时赋予的新值,方法选择参数】

返回两个值:阈值,阈值处理后的图像矩阵。

  • cv2.THRESH_BINARY(黑白二值)
  • cv2.THRESH_BINARY_INV(黑白二值翻转)
  • cv2.THRESH_TRUNC(得到图像为多像素值)
  • cv2.THRESH_TOZERO(当像素高于阈值时像素设置为自己提供的像素值,低于阈值时不作处理)
  • cv2.THRESH_TOZERO_INV(当像素低于阈值时设置为自己提供的像素值,高于阈值时不作处理)
import cv2
import numpy as np
img = cv2.imread('dog.jpg', 0)# 灰度图
# 黑白二值
res, thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
# 黑白二值翻转
res, thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
# 得到图像为多像素值
res, thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)
# 当像素高于阈值时像素设置为255,低于阈值时不作处理
res, thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
# 当像素低于阈值时设置为255,高于阈值时不作处理
res, thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)
print(res)
cv2.imshow('thresh1', thresh1)
cv2.imshow('thresh2', thresh2)
cv2.imshow('thresh3', thresh3)
cv2.imshow('thresh4', thresh4)
cv2.imshow('thresh5', thresh5)
cv2.imshow('gray-img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

二、自适应阈值

简单阈值是一种全局性的阈值,只需要设定一个阈值,整个图像都和这个阈值比较,而自适应阈值可以看成一种局部性的阈值,通过设定一个区域大小,比较这个点与区域大小里面像素点的平均值的大小关系确定这个像素点的情况。

这种方法理论上得到的效果更好,相当于在动态自适应调整属于自己像素点的阈值,而不是整幅图像都用一个阈值。

import cv2
import numpy as np
img = cv2.imread('dog.jpg',0)
res, th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
# 第一个参数为原始图像矩阵
# 第二个参数为像素值上限
# 第三个是自适应方法:
# cv2.ADAPTIVE_THRESH_MEAN_C:领域内均值
# -----cv2.ADAPTIVE_THRESH_GAUSSIAN_C:领域内像素点加权和,权重为一个高斯窗口
# 第四个值得赋值方法:只有cv2.THRESH_BINARY和cv2.THRESH_BINARY_INV
# 第五个Block size:设定领域大小(一个正方形的领域)
# 第六个参数C,阈值等于均值或者加权值减去这个常数(为0相当于阈值,就是求得领域内均值或者加权值)
th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 2)
th3 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
th4 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
cv2.imshow('img', img)
cv2.imshow('th1', th1)
cv2.imshow('th2', th2)
cv2.imshow('th3', th3)
cv2.imshow('th4', th4)
cv2.waitKey(0)
cv2.destroyAllWindows()

三、Otsu's二值化

 cv2.threshold( )函数有两个返回值,一个是阈值,第二个是处理后的图像矩阵。

前面对于阈值的设定上,我们选择的阈值都是127,在实际情况中,有的图像阈值不是127得到的图像效果更好。那么这里就需要算法自己去寻找一个阈值,而Otsu's就可以自己找到一个认为最好的阈值。并且Otsu's非常适合于图像灰度直方图(只有灰度图像才有)具有双峰的情况。

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('dog.jpg', 0)
ret1, th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) # 简单滤波
ret2, th2 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) # Otsu滤波
print(ret2)
cv2.imshow('img', img)
cv2.imshow('th1', th1)
cv2.imshow('th2', th2)
# 解决matplotlib中显示图像的中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.hist(img.ravel(), 256)
plt.title('灰度直方图')
plt.show()
cv2.waitKey(0)
cv2.destroyAllWindows()

第十四节,OpenCV学习(三)图像的阈值分割的更多相关文章

  1. 第十四节: EF的三种模式(四) 之 原生正宗的 CodeFirst模式的默认约定

    一. 简介 1. 正宗的CodeFirst模式是不含有edmx模型,需要手动创建实体.创建EF上下文,然后生成通过代码来自动映射生成数据库. 2. 旨在:忘记SQL.忘记数据库. 3. 三类配置:On ...

  2. 风炫安全web安全学习第三十四节课 文件包含漏洞防御

    风炫安全web安全学习第三十四节课 文件包含漏洞防御 文件包含防御 在功能设计上不要把文件包含的对应文件放到前台去操作 过滤各种../,https://, http:// 配置php.ini文件 al ...

  3. 第三百七十四节,Django+Xadmin打造上线标准的在线教育平台—创建课程app,在models.py文件生成4张表,课程表、课程章节表、课程视频表、课程资源表

    第三百七十四节,Django+Xadmin打造上线标准的在线教育平台—创建课程app,在models.py文件生成4张表,课程表.课程章节表.课程视频表.课程资源表 创建名称为app_courses的 ...

  4. 第三百八十四节,Django+Xadmin打造上线标准的在线教育平台—路由映射与静态文件配置以及会员注册

    第三百八十四节,Django+Xadmin打造上线标准的在线教育平台—路由映射与静态文件配置以及会员注册 基于类的路由映射 from django.conf.urls import url, incl ...

  5. 第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理

    第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理 1.映射(mapping)介绍 映射:创建索引的时候,可以预先定义字 ...

  6. 第三百五十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—数据收集(Stats Collection)

    第三百五十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—数据收集(Stats Collection) Scrapy提供了方便的收集数据的机制.数据以key/value方式存储,值大多是计数 ...

  7. 第三百四十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—craw母版l创建自动爬虫文件—以及 scrapy item loader机制

    第三百四十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—craw母版l创建自动爬虫文件—以及 scrapy item loader机制 用命令创建自动爬虫文件 创建爬虫文件是根据scrap ...

  8. 第三百三十四节,web爬虫讲解2—Scrapy框架爬虫—Scrapy爬取百度新闻,爬取Ajax动态生成的信息

    第三百三十四节,web爬虫讲解2—Scrapy框架爬虫—Scrapy爬取百度新闻,爬取Ajax动态生成的信息 crapy爬取百度新闻,爬取Ajax动态生成的信息,抓取百度新闻首页的新闻rul地址 有多 ...

  9. 第三百二十四节,web爬虫,scrapy模块介绍与使用

    第三百二十四节,web爬虫,scrapy模块介绍与使用 Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中.其最初是为了 ...

随机推荐

  1. 是时候理解下HTTPS的原理及流程了

    1.什么是HTTP协议? HTTP协议是Hyper Text Transfer Protocol(超文本传输协议),位于TCP/IP模型当中的应用层.HTTP协议通过请求/响应的方式,在客户端和服务端 ...

  2. 类StringBuilder

    StringBuilder概述 因为字符串的底层是一个被final修饰的数组,不能改变,是一个常量.所以每当进行字符串拼接时,总是会在内存中创建一个新的对象.由此可知,如果对字符串进行拼接操作,每次拼 ...

  3. dede织梦 arclist标签完美支持currentstyle属性

    由于客户需求,所以进行对文章的arclist标签进行设置当前样式(currentstyle),修改前记得备份. dede版本v5.7sp 找到PHP修改: include/taglib/arclist ...

  4. JVN的理解

    写的很不错,通俗易懂:http://www.cnblogs.com/leefreeman/p/7344460.html

  5. [转帖]创建文件或修改文件时间 touch

    Linux命令(五)创建文件或修改文件时间 touch https://www.cnblogs.com/ay-a/p/7900274.html touch -t .x86_64.rpm 记得 wind ...

  6. nginx 返回json格式内容

    例子: #如果访问的ip是192.168.1.1,就直接返回json格式的内容 location / { default_type application/json; #####格式 if ( $re ...

  7. 利用Python查看微信共同好友

    思路 首先通过itchat这个微信个人号接口扫码登录个人微信网页版,获取可以识别好友身份的数据.这里是需要分别登录两人微信的,拿到两人各自的好友信息存到列表中. 这样一来,查共同好友就转化成了查两个列 ...

  8. Nginx HTTP变量原理

    L:72 首先如何获取url追加参数值 如: http://www.xxx.com?a=1&b=2 return '$arg_a, $arg_b'; #通过前缀 arg_a 就能获取到 参数a ...

  9. 用ES6创建一个简单工厂模式

    1 什么是工厂模式? 工厂模式是用来创建对象的一种最常用的设计模式.我们不暴露创建对象的具体逻辑,而是将将逻辑封装在一个函数中,那么这个函数就可以被视为一个工厂.工厂模式根据抽象程度的不同可以分为:简 ...

  10. ubuntu14.04按照mysql5.7

    1.安装mysql5.5 https://www.cnblogs.com/zhuyp1015/p/3561470.html https://www.cnblogs.com/ruofengzhishan ...