Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subspace \([0,2]\) of \(\mathbb{R}\). The map \(p: X \rightarrow Y\) defined by
\[
p(x)=\begin{cases}
x & \text{for}\; x \in [0,1],\\
x-1 & \text{for}\; x \in [2,3]
\end{cases}
\]
is a closed map thus a quotient map, but not open.

Proof (a) \(p\) is surjective is obvious.

(b) Prove \(p\) is continuous.

\(p\) is a piecewise function comprised of two parts \(p_1 = x\) with \(x \in [0,1])\) and \(p_2=x-1\) with \(x\in[2,3]\). We extend the domains and ranges of \(p_1\) and \(p_2\) to \(\mathbb{R}\) and obtain two continuous functions \(\tilde{p}_1\) and \(\tilde{p}_2\). According to Theorem 18.2 (d) and (e), as the restrictions of \(\tilde{p}_1\) and \(\tilde{p}_2\), \(p_1\) and \(p_2\) are continuous. Because \(X\) comprises two disjoint parts \([0,1]\) and \([2,3]\), both of them are both open and closed in \(X\). By treating them as open sets, according to Theorem 18.2 (f) the local formulation of continuity, \(p\) is continuous. Or if we treat \([0,1]\) and \([2,3]\) as closed sets, according to Theorem 18.3 the pasting lemma, \(p\) is also continuous.

Comment To prove the continuity of a piecewise function, it is very cumbersome if we start the proof from the raw definition of continuity, which will involve lots of cases for discussion. The appropriate way is to use Theorem 18.2 and Theorem 18.3, especially extensions and restriction of function's domain and range.

(c) Prove \(p\) is a closed map, thus a quotient map.

It is obvious to see that \(\tilde{p}_1\) is an identity map and \(\tilde{p}_2\) is a merely a translation. Both of them are closed maps. For a closed set \(C\) in \(X\), there exists a closed set \(C'\) in \(\mathbb{R}\) such that \(C = C'\cap X\). The image of \(C\) under \(p\) is
\[
\begin{aligned}
p(C) &= p(C'\cap X) = p(C' \cap ([0,1] \cup [2,3])) \\
&= p\left( (C'\cap[0,1]) \cup (C'\cap[2,3]) \right) \\
&= p(C'\cap[0,1]) \cup p(C'\cap[2,3])
\end{aligned}.
\]
According to Theorem 17.2, both \(C'\cap[0,1]\) and \(C'\cap[2,3]\) are closed in \(\mathbb{R}\). Meanwhile, we have \(p(C'\cap[0,1])=\tilde{p}_1(C'\cap[0,1])\) and \(p(C'\cap[2,3])=\tilde{p}_2(C'\cap[2,3])\), both of which are closed in \(\mathbb{R}\) because \(\tilde{p}_1\) and \(\tilde{p}_2\) are closed maps. Because \(Y\) is closed in \(\mathbb{R}\), by applying Theorem 17.2 again, \(p(C'\cap[0,1]) \) and \(p(C'\cap[2,3])\) are closed in \(Y\), so is their union \(p(C)\). Hence, \(p\) is a closed map.

(d) Prove \(p\) is not an open map.

\([0,1]\) is open in \(X\) but \(p([0,1])=[0,1]\), which is closed in \(Y\). Therefore, \(p\) is not an open map.

James Munkres Topology: Sec 22 Example 1的更多相关文章

  1. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  2. James Munkres Topology: Sec 22 Exer 3

    Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...

  3. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  4. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  5. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  6. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  7. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  8. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  9. James Munkres Topology: Theorem 16.3

    Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...

随机推荐

  1. Multi-View 3D Reconstruction with Geometry and Shading——Part-1

    From PhDTheses Multi-View 3D Reconstruction with Geometry and Shading 计算机视觉的主要任务就是利用图像信息能智能理解周围的世界. ...

  2. Django 后台定制自己的选择框删除函数

    from django.contrib import admin from .models import Article,Category from datetime import datetime ...

  3. 第二周博客作业<西北师范大学|李晓婷>

    1.助教博客链接:https://home.cnblogs.com/u/lxt-/ 2.点评作业内容: https://www.cnblogs.com/dxd123/p/10494907.html#4 ...

  4. 基于前后端分离的Nginx+Tomcat动静分离

    1.什么是动静分离 "动"与"静" 在弄清动静分离之前,我们要先明白什么是动,什么是静. 在Web开发中,通常来说,动态资源其实就是指那些后台资源,而静态资源就 ...

  5. Phoenix(SQL On HBase)

    1.简介 Phoenix是一个HBase框架,可以通过SQL的方式来操作HBase. Phoenix是构建在HBase上的一个SQL层,是内嵌在HBase中的JDBC驱动,能够让用户使用标准的JDBC ...

  6. python--协程之特别篇

    Python通过yield提供了对协程的基本支持,但是不完全.而第三方的gevent为Python提供了比较完善的协程支持. gevent是第三方库,通过greenlet实现协程,其基本思想是: 当一 ...

  7. Eclipse使用Git检出项目

    1.打开Eclipse——File——Import...: 2.在弹出的Import框中选择Git——Projects from Git——NEXT: 3.选择Clone URI——Next: 4.输 ...

  8. C# Datetime时间指定时区

    string start_time_str = "2018-03-21 06:00:00"; DateTime.Parse(start_time_str) // :: 格林威治时间 ...

  9. C. Neko does Maths(数论 二进制枚举因数)

     题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...

  10. 51nod 2512

    看错题目!!啊啊啊,都说了不能有前导,我怎么这么想当然呢!!另外1也是2的幂次方 代码: #include<iostream> #include<cstdio> #includ ...