Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subspace \([0,2]\) of \(\mathbb{R}\). The map \(p: X \rightarrow Y\) defined by
\[
p(x)=\begin{cases}
x & \text{for}\; x \in [0,1],\\
x-1 & \text{for}\; x \in [2,3]
\end{cases}
\]
is a closed map thus a quotient map, but not open.

Proof (a) \(p\) is surjective is obvious.

(b) Prove \(p\) is continuous.

\(p\) is a piecewise function comprised of two parts \(p_1 = x\) with \(x \in [0,1])\) and \(p_2=x-1\) with \(x\in[2,3]\). We extend the domains and ranges of \(p_1\) and \(p_2\) to \(\mathbb{R}\) and obtain two continuous functions \(\tilde{p}_1\) and \(\tilde{p}_2\). According to Theorem 18.2 (d) and (e), as the restrictions of \(\tilde{p}_1\) and \(\tilde{p}_2\), \(p_1\) and \(p_2\) are continuous. Because \(X\) comprises two disjoint parts \([0,1]\) and \([2,3]\), both of them are both open and closed in \(X\). By treating them as open sets, according to Theorem 18.2 (f) the local formulation of continuity, \(p\) is continuous. Or if we treat \([0,1]\) and \([2,3]\) as closed sets, according to Theorem 18.3 the pasting lemma, \(p\) is also continuous.

Comment To prove the continuity of a piecewise function, it is very cumbersome if we start the proof from the raw definition of continuity, which will involve lots of cases for discussion. The appropriate way is to use Theorem 18.2 and Theorem 18.3, especially extensions and restriction of function's domain and range.

(c) Prove \(p\) is a closed map, thus a quotient map.

It is obvious to see that \(\tilde{p}_1\) is an identity map and \(\tilde{p}_2\) is a merely a translation. Both of them are closed maps. For a closed set \(C\) in \(X\), there exists a closed set \(C'\) in \(\mathbb{R}\) such that \(C = C'\cap X\). The image of \(C\) under \(p\) is
\[
\begin{aligned}
p(C) &= p(C'\cap X) = p(C' \cap ([0,1] \cup [2,3])) \\
&= p\left( (C'\cap[0,1]) \cup (C'\cap[2,3]) \right) \\
&= p(C'\cap[0,1]) \cup p(C'\cap[2,3])
\end{aligned}.
\]
According to Theorem 17.2, both \(C'\cap[0,1]\) and \(C'\cap[2,3]\) are closed in \(\mathbb{R}\). Meanwhile, we have \(p(C'\cap[0,1])=\tilde{p}_1(C'\cap[0,1])\) and \(p(C'\cap[2,3])=\tilde{p}_2(C'\cap[2,3])\), both of which are closed in \(\mathbb{R}\) because \(\tilde{p}_1\) and \(\tilde{p}_2\) are closed maps. Because \(Y\) is closed in \(\mathbb{R}\), by applying Theorem 17.2 again, \(p(C'\cap[0,1]) \) and \(p(C'\cap[2,3])\) are closed in \(Y\), so is their union \(p(C)\). Hence, \(p\) is a closed map.

(d) Prove \(p\) is not an open map.

\([0,1]\) is open in \(X\) but \(p([0,1])=[0,1]\), which is closed in \(Y\). Therefore, \(p\) is not an open map.

James Munkres Topology: Sec 22 Example 1的更多相关文章

  1. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  2. James Munkres Topology: Sec 22 Exer 3

    Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...

  3. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  4. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  5. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  6. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  7. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  8. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  9. James Munkres Topology: Theorem 16.3

    Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...

随机推荐

  1. 微信公众号开发之access_token的全局共用

    最近做微信公众号开发,涉及到access_token的缓存问题(避免各自的应用都去取access_token,同时解决微信 appid和appsecret的安全问题),在通用权限管理系统底层增加了实现 ...

  2. 【一本通1329:【例8.2】细胞&&洛谷P1451 求细胞数量】

    1329:[例8.2]细胞 [题目描述] 一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数.如: 阵列 4 10 023 ...

  3. eclipse 包 取消代码第一行package包名 自动补全时取消自动引入包名 修改名字 取消引用 自动导入publilc static void main(String[] args) {}

    --项目 --包 包是为了管理类文件,同个包下不允许同名类文件,但不同包就可以,把类放在包里是规范 (https://zhidao.baidu.com/question/239471930532952 ...

  4. LA4255/UVa1423 Guess 拓扑排序 并查集

    评分稍微有一点过分..不过这个题目确确实实很厉害,对思维训练也非常有帮助. 按照套路,我们把矩阵中的子段和化为前缀和相减的形式.题目就变成了给定一些前缀和之间的大小关系,让你构造一组可行的数据.这个东 ...

  5. java day02 记录

    一.介绍运算符使用,包含+ - * / 及 自增.三元运算等 package com.itheima_02; /* * 赋值运算符: * 基本的赋值运算符:= * 扩展的赋值运算符:+=,-=,*=, ...

  6. js实现点气球小游戏

    二话不说直接贴代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  7. I/O模型系列之一:Linux I/O模型基本概念

    1. IO模型矩阵 基本 Linux I/O 模型的简单矩阵: 同步与异步:描述的是用户线程与内核的交互方式. 同步IO和异步IO的区别就在于:数据拷贝的时候进程是否阻塞! 同步是指用户线程发起IO请 ...

  8. linux的sed命令(一)

    转自:https://www.cnblogs.com/ginvip/p/6376049.html Sed 简介 sed 是一种新型的,非交互式的编辑器.它能执行与编辑器 vi 和 ex 相同的编辑任务 ...

  9. Coursera, Big Data 4, Machine Learning With Big Data (week 3/4/5)

    week 3 Classification KNN :基本思想是 input value 类似,就可能是同一类的 Decision Tree Naive Bayes Week 4 Evaluating ...

  10. 常见JS写法

    1.在DIV中找某个CLASS $('.doc_input', 'div')