James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subspace \([0,2]\) of \(\mathbb{R}\). The map \(p: X \rightarrow Y\) defined by
\[
p(x)=\begin{cases}
x & \text{for}\; x \in [0,1],\\
x-1 & \text{for}\; x \in [2,3]
\end{cases}
\]
is a closed map thus a quotient map, but not open.
Proof (a) \(p\) is surjective is obvious.
(b) Prove \(p\) is continuous.
\(p\) is a piecewise function comprised of two parts \(p_1 = x\) with \(x \in [0,1])\) and \(p_2=x-1\) with \(x\in[2,3]\). We extend the domains and ranges of \(p_1\) and \(p_2\) to \(\mathbb{R}\) and obtain two continuous functions \(\tilde{p}_1\) and \(\tilde{p}_2\). According to Theorem 18.2 (d) and (e), as the restrictions of \(\tilde{p}_1\) and \(\tilde{p}_2\), \(p_1\) and \(p_2\) are continuous. Because \(X\) comprises two disjoint parts \([0,1]\) and \([2,3]\), both of them are both open and closed in \(X\). By treating them as open sets, according to Theorem 18.2 (f) the local formulation of continuity, \(p\) is continuous. Or if we treat \([0,1]\) and \([2,3]\) as closed sets, according to Theorem 18.3 the pasting lemma, \(p\) is also continuous.
Comment To prove the continuity of a piecewise function, it is very cumbersome if we start the proof from the raw definition of continuity, which will involve lots of cases for discussion. The appropriate way is to use Theorem 18.2 and Theorem 18.3, especially extensions and restriction of function's domain and range.
(c) Prove \(p\) is a closed map, thus a quotient map.
It is obvious to see that \(\tilde{p}_1\) is an identity map and \(\tilde{p}_2\) is a merely a translation. Both of them are closed maps. For a closed set \(C\) in \(X\), there exists a closed set \(C'\) in \(\mathbb{R}\) such that \(C = C'\cap X\). The image of \(C\) under \(p\) is
\[
\begin{aligned}
p(C) &= p(C'\cap X) = p(C' \cap ([0,1] \cup [2,3])) \\
&= p\left( (C'\cap[0,1]) \cup (C'\cap[2,3]) \right) \\
&= p(C'\cap[0,1]) \cup p(C'\cap[2,3])
\end{aligned}.
\]
According to Theorem 17.2, both \(C'\cap[0,1]\) and \(C'\cap[2,3]\) are closed in \(\mathbb{R}\). Meanwhile, we have \(p(C'\cap[0,1])=\tilde{p}_1(C'\cap[0,1])\) and \(p(C'\cap[2,3])=\tilde{p}_2(C'\cap[2,3])\), both of which are closed in \(\mathbb{R}\) because \(\tilde{p}_1\) and \(\tilde{p}_2\) are closed maps. Because \(Y\) is closed in \(\mathbb{R}\), by applying Theorem 17.2 again, \(p(C'\cap[0,1]) \) and \(p(C'\cap[2,3])\) are closed in \(Y\), so is their union \(p(C)\). Hence, \(p\) is a closed map.
(d) Prove \(p\) is not an open map.
\([0,1]\) is open in \(X\) but \(p([0,1])=[0,1]\), which is closed in \(Y\). Therefore, \(p\) is not an open map.
James Munkres Topology: Sec 22 Example 1的更多相关文章
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
随机推荐
- filter的使用
(1)什么是filter 过滤器是处于客户端与服务器资源文件之间的一道过滤网,在访问资源文件之前,通过一系列的过滤器对请求进行修改,判断等,把不符合规则的请求在中途拦截或者修改.或者对响应进行过滤.拦 ...
- js+jquery创建元素
例:创建如下标签: <a id="baidu" class="link" name="baidu">这是一个链接</a&g ...
- Linux命令_sed
1.替换(将"xxx"替换成"yyy") 现有文件pets.txt 要将其中的"my"替换为"your",可以这样替换, ...
- 《Java》第九周学习总结
下载mysql 选择mysql的管理软件 idea可以直接连接 然后用库运行程序,但是没有截图,,因为想在navicat上试试,可惜速度太慢了 打开idea又很慢,所以明天再更新
- 【AGC 002F】Leftmost Ball
Description Snuke loves colorful balls. He has a total of N*K balls, K in each of his favorite N col ...
- 20155324《网络对抗》Exp1 PC平台逆向破解(5)M
20155324<网络对抗>Exp1 PC平台逆向破解(5)M 实验目标 本次实践的对象是一个名为~pwn1~的~linux~可执行文件. 该程序正常执行流程是:~main~调用~foo~ ...
- 深入理解display属性——前端布局常用重要属性
小注:display属性在网页布局中非常常见,但经常用到的仅仅是block.inline-block.inline和none等寥寥几个属性值,下面本人将详细介绍display属性的各个方面 定义 di ...
- apply,all,bind的区别
这三个都是用来改变this指向的 call() 和apply()的第一个参数相同,就是指定的对象.这个对象就是该函数的执行上下文.call()和apply()的区别就在于,两者接收的参数不一样.cal ...
- AB PLC首次IP地址如何分配
AB PLC首次IP地址如何分配,这里介绍的方法是针对CompactLogix和ControlLogix控制器 一.准备工作 AB PLC控制器一台,本文以5069-L330ER为例,将其通电: 笔记 ...
- andriod webview和h5
1.WebBrowserActivity extends BaseActivity 2.setContentView(R.layout.activity_web_html); <WebView ...