【BZOJ-2599】Race 点分治
2599: [IOI2011]Race
Time Limit: 70 Sec Memory Limit: 128 MB
Submit:
2590 Solved: 769
[Submit][Status][Discuss]
Description
给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000
Input
第一行 两个整数 n, k
第二..n行 每行三个整数 表示一条无向边的两端和权值 (注意点的编号从0开始)
Output
一个整数 表示最小边数量 如果不存在这样的路径 输出-1
Sample Input
0 1 1
1 2 2
1 3
4
Sample Output
HINT
$N<=200000,K<=1000000$
Source
Solution
树的点分治裸题,但是做法有点有趣
开始考虑的是:
正常的点分,然后每次用当前根开始BFS子树,以获得子树中每个节点到根的边权和和路径长度,并利用之前的结果和当前结果更新答案
不过貌似写挂了50s左右炸掉- -
发现其实不需要,只需要开一个100W的数组来记录 当前到根的距离为$i$的路径长度最短值
这样就可以不断对子树进行更新和对答案进行更新了
时间复杂度依旧是$O(nlogn)$
Code
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 200010
#define maxk 1000010
#define inf 0x3f3f3f3f
int n,K;
struct EdgeNode{int next,to,val;}edge[maxn<<];
int head[maxn],cnt=;
void add(int u,int v,int w) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v; edge[cnt].val=w;}
void insert(int u,int v,int w) {add(u,v,w); add(v,u,w);}
int size[maxn],maxx[maxn],num[maxk],siz,root,ans;
bool visit[maxn];
void Getroot(int now,int last)
{
size[now]=; maxx[now]=;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=last && !visit[edge[i].to])
{
Getroot(edge[i].to,now);
size[now]+=size[edge[i].to];
maxx[now]=max(maxx[now],size[edge[i].to]);
}
maxx[now]=max(maxx[now],siz-size[now]);
if (maxx[now]<maxx[root]) root=now;
}
struct Node{int d,t;}st[maxn];
int s,top;
void DFS(int now,int dis,int tt,int last)
{
if (dis>K) return;
ans=min(ans,tt+num[K-dis]);
st[top++]=Node{dis,tt};
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=last && !visit[edge[i].to])
DFS(edge[i].to,dis+edge[i].val,tt+,now);
}
void Solve(int now)
{
root=; Getroot(now,); now=root;
s=,top=;
for (int i=head[now]; i; i=edge[i].next)
if (!visit[edge[i].to])
{
DFS(edge[i].to,edge[i].val,,now);
for (int j=s; j<=top-; j++)
num[st[j].d]=min(num[st[j].d],st[j].t);
s=top;
}
for (int i=; i<=top-; i++) num[st[i].d]=inf; num[]=;
visit[now]=;
for (int i=head[now]; i; i=edge[i].next)
if (!visit[edge[i].to])
siz=size[edge[i].to],Solve(edge[i].to);
}
int main()
{
n=read(); K=read();
for (int u,v,w,i=; i<=n-; i++) u=read()+,v=read()+,w=read(),insert(u,v,w);
memset(num,inf,sizeof(num)); num[]=;
ans=inf;
siz=maxx[]=n; Solve();
if (ans!=inf) {printf("%d\n",ans); return ;}
puts("-1");
return ;
}
AC第一道IOI ovo!
【BZOJ-2599】Race 点分治的更多相关文章
- BZOJ 2599 Race(树分治)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2599 题意:给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. 题意:每次 ...
- [BZOJ 3456]城市规划(cdq分治+FFT)
[BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...
- [BZOJ 2989]数列(CDQ 分治+曼哈顿距离与切比雪夫距离的转化)
[BZOJ 2989]数列(CDQ 分治) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]| ...
- BZOJ 2599: [IOI2011]Race( 点分治 )
数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...
- 【BZOJ 2599】【IOI 2011】Race 点分治
裸的点分治,然而我因为循环赋值$s$时把$i <= k$写成$i <= n$了,WA了好长时间 #include<cstdio> #include<cstring> ...
- bzoj 2599 [IOI2011]Race (点分治)
[题意] 问树中长为k的路径中包含边数最少的路径所包含的边数. [思路] 统计经过根的路径.假设当前枚举到根的第S个子树,若x属于S子树,则有: ans<-dep[x]+min{ dep[y] ...
- BZOJ 2599 [IOI2011]Race【Tree,点分治】
给出N(1 <= N <= 200000)个结点的树,求长度等于K(1 <= K <= 1000000)的路径的最小边数. 点分治,这道题目和POJ 2114很接近,2114是 ...
- bzoj 2599: [IOI2011]Race (点分治 本地过了就是过了.jpg)
题面:(复制别人的...) Description 给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. Input 第一行 两个整数 n, k第二..n行 每行三个整数 表示一条无向边的 ...
- 【BZOJ】2599: [IOI2011]Race 点分治
[题意]给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000.注意点从0开始编号,无解输出-1. [算法]点分治 [题解] ...
- bzoj 2599: [IOI2011]Race【点分治】
点分治,用一个mn[v]数组记录当前root下长为v的链的最小深度,每次新加一个儿子的时候都在原来儿子更新过的mn数组里更新ans(也就是查一下mn[m-dis[p]]+de[p]) 这里注意更新和初 ...
随机推荐
- [推荐]两款Flash上传插件(1)–CFUpdate文件批量上传组件
搞开发的同学都知道,网上可搜到的可用的Flash图片上传的组件少之又少,可定制界面,不需要安装组件,且可免费用于任何商业系统的,更是凤毛麟角,如果你和我一样,迫切需要一款这样的一款组件的话,不妨试试C ...
- Js经典相册
Js经典相册 点击下载
- java.sql.preparedstatement和java.sql.statement的区别
本文转自CSDN,然后整理了一遍.原文出处:CSDN JDBC(java database connectivity,java数据库连接)的api中的主要的四个类之一的java.sql.stateme ...
- [转]使用URLDecoder和URLEncoder对中文进行处理
一 URLEncoder HTML 格式编码的实用工具类.该类包含了将 String 转换为 application/x-www-form-urlencoded MIME 格式的静态方法.有关 HTM ...
- getSelection、range 对象属性,方法理解,解释
网上转了一圈发现没有selection方面的解释,自己捣鼓下 以这段文字为例子.. <p><b>法国国营铁路公司(SNCF)20日承认,</b>新订购的2000列火 ...
- Android -- Apk安装简诉
安装涉及到如下几个目录 system/app 系统自带的应用程序,无法删除 data/app 用户程序安装的目录,有删除权限. 安装时把apk文件复制到此目录 data/data 存放 ...
- web 前端常用组件【05】ZTree
web 项目或多或少都会有涉及到什么人员职称树,菜单树,组织机构树等. 历手三四个项目有大有小,采用的树前端都是 Ztree. 有些优秀的J2EE 框架将这些常用的组件都封装起来,作为模块化的组件提供 ...
- 是什么时候开始学习gulp了
转自:http://www.ydcss.com/archives/18 简介: gulp是前端开发过程中对代码进行构建的工具,是自动化项目的构建利器:她不仅能对网站资源进行优化,而且在开发过程中很多重 ...
- SQL2008R2 不支持用该后端版本设计数据库关系图或表
向下不兼容. 要么安装SQL2012,要么把SQL2012数据库通过脚本转成2008
- spring+mybaties+springMvc+slf4j所需jar包