乘法逆元__C++
在开始之前我们先介绍3个定理:
1.乘法逆元(在维基百科中也叫倒数,当然是 mod p后的,其实就是倒数不是吗?):
如果ax≡1 (mod p),且gcd(a,p)=1(a与p互质),则称a关于模p的乘法逆元为x。
2.费马小定理(定义来自维基百科):
假如a是一个整数,p是一个质数,那么是p的倍数,可以表示为
如果a不是p的倍数,这个定理也可以写成
3.
扩展欧几里得
- (定义来自维基百科):
已知整数a、b,扩展欧几里得算法可以在求得a、b的最大公约数的同时,能找到整数x、y(其中一个很可能是负数),使它们满足贝祖等式。
好了,在明白上面的定理后我们开始分析乘法逆元:ax≡1 (mod p) 这个等式用中文描述就是 a乘一个数x并模p等于1,即 a%p*x%p=res,res%p=1;看上去就是同余定理的一个简单等式- -。那么问题来了。
为什么可以用费马小定理来求逆元呢?
由费马小定理 ap-1≡1 两边同时乘 ap-1 得 ap-2≡ap-1 ,两边同时除 ap-1 得 ap-2/ ap-1≡1, 变形得 a*ap-2≡1(mod p),答案已经很明显了:若a,p互质,因为a*ap-2≡1(mod p)且a*x≡1(mod p),则x=ap-2(mod p),用快速幂可快速求之。
为什么可以用扩展欧几里得求得逆元?
我们都知道模就是余数,比如12%3=12-12/3=1,18%2=18-18/5=3。(/是程序运算中的除)
那么ax≡1 (mod p)即ax-yp=1.把y写成+的形式就是ax+py=1,为方便理解下面我们把p写成b就是ax+by=1。就表示x是a的模b乘法逆元,y是b的模a乘法逆元。然后就可以用扩展欧几里得求了。
知道逆元怎么算之后,那么乘法逆元有什么用呢?
做题时如果结果过大一般都会让你模一个数,确保结果不是很大,而这个数一般是1e9+7,而且这个数又是个素数,加减乘与模运算的顺序交换不会影响结果,但是除法不行。有的题目要求结果mod一个大质数,如果原本的结果中有除法,比如除以a,那就可以乘以a的逆元替代。(除一个数等于乘它的倒数,虽然这里的逆元不完全是倒数,但可以这么理解,毕竟乘法逆元就是倒数的扩展)。
扩展欧几里得求逆元代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
void exgcd(ll a,ll b,ll& d,ll& x,ll& y){
if(!b) { d = a; x = ; y = ; }
else{ exgcd(b, a%b, d, y, x); y -= x*(a/b); }
}
ll inv(ll a, ll p){
ll d,x,y;
exgcd(a,p,d,x,y);
return d == ? (x+p)%p : -;
}
int main()
{
ll a,p;
while(){
scanf("%lld %lld",&a,&p);
printf("%lld\n",inv(a,p));
}
}
乘法逆元__C++的更多相关文章
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 51nod1256(乘法逆元)
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- HDU 5651 计算回文串个数问题(有重复的全排列、乘法逆元、费马小定理)
原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减 ...
- Codeforces 543D Road Improvement(树形DP + 乘法逆元)
题目大概说给一棵树,树的边一开始都是损坏的,要修复一些边,修复完后要满足各个点到根的路径上最多只有一条坏的边,现在以各个点为根分别求出修复边的方案数,其结果模1000000007. 不难联想到这题和H ...
- HDU 1452 (约数和+乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...
- HDU 1576 (乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...
- 51Nod 1256 乘法逆元 Label:exgcd
1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K ...
- hdu 2669 Romantic (乘法逆元)
Romantic Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
随机推荐
- jquery Syntax error, unrecognized expression:的解决方法
原文地址 https://blog.csdn.net/flowingfog/article/details/42739773 问题: 将模板的html内容转换成jquery时报以下错误:Syntax ...
- Factorialize a Number-freecodecamp算法题目
Factorialize a Number(计算一个整数的阶乘) 要求 给定一个整数,求其阶乘(用字母n来代表一个整数,阶乘代表着所有小于或等于n的整数的乘积) 思路 确定乘的次数 用for循环进行累 ...
- 如何解决U盘装系统后磁盘总容量变小?
我在用Win32_Disk_Imager工具制作U盘系统盘之后,发现U盘大小变为2M,另外的大小没有被分配,解决办法如下. 打开:http://jingyan.baidu.com/article/59 ...
- Redis错误解决:(error) MISCONF Redis is configured to save RDB snapshots
刚开始学习使用redis数据库,在执行删除命令时,提示了我这么一个错误: 错误提示 (error) MISCONF Redis is configured to save RDB snapshots, ...
- (68)zabbix windows性能计数器使用详解
概述 windows下的性能计数器让zabbix监控更加轻松,直接获取性能计数器的数值即可完成windows监控.性能计数器如下: 1 perf_counter["\Processor( ...
- Linux基础学习-LVM逻辑卷管理遇到的问题
LVM学习逻辑卷管理创建逻辑卷遇到的问题 1 实验环境 系统 内核 发行版本 CentOS 2.6.32-754.2.1.el6.x86_64 CentOS release 6.10 (Final) ...
- perl-basic-分支&循环
if elsif shorter if: if+condition放在句子尾部. use strict; use warnings; my $word = "antidisestablish ...
- python数据类型之元组(tuple)
元组是python的基础类型之一,是有序的. 元组是不可变的,一旦创建便不能再修改,所以叫只读列表. name = ('alex', 'jack') name[0] = 'mark' # TypeEr ...
- selenium2断言类Assert的使用
测试中断言的重要性 一.断言的作用: 1.断言也就是检查点,重在判断我们通过页面得出来的值与期望值是否相等,如果相等,则代表断言成功,程序会继续往下执行,如果不相等,则代表断言失败,程序就会在断言失败 ...
- STVP烧录教程
可以运行独立的烧录软件ST Visual Programmer (STVP)进行STM8芯片烧录.运行“开始”->ST Toolset->Development Tools -> S ...