题目链接

在\(N\times N\) 的棋盘里面放 \(K\)个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共\(8\) 个格子。

\(1\le N\le 9,0\le K\le N*N\)

\(f(i,j,l)\)来表示前 \(i\) 行,当前状态为\(j\) ,且已经放置 \(l\)个国王时的方案。

\(j\) 这一维用二进制来表示

先预处理在一行上的所有合法状态(即排除同一行上两个相邻的情况),然后直接枚举这些来匹配上一行的状态即可。

\(f(i,j,l) = \sum f(i-1,x,l-num(x))\)

\(num(x)\) 为x在二进制下有多少个1

转移时要排除两行间国王互相攻击不合法的情况。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
vector<int> sta,stan;
ll d[10][(1<<10)][100];
int n,k;
bool ok(int i,int j){
if(i & j)return false;
if((i << 1) & j)return false;
if(i & (j << 1))return false;
return true;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=0;i<(1<<n);i++){
int num = 0;
bool flag = true;
for(int j=0;j<n-1;j++){
if(i >> j & 1){
num++;
if(i >> (j+1) & 1){
flag = false;
break;
}
}
}
if(!flag)continue;
sta.push_back(i);
stan.push_back(num + (i >> (n-1) & 1));
}
for(int i=0;i<sta.size();i++){
d[1][i][stan[i]] = 1;
}
for(int i=2;i<=n;i++){
for(int j=0;j<sta.size();j++){
for(int t=0;t<sta.size();t++){
if(ok(sta[j],sta[t])){
for(int p = stan[j];p <= k;p++){
d[i][j][p] += d[i-1][t][p-stan[j]];
}
}
}
}
}
ll res = 0;
for(int i=0;i<sta.size();i++)
res += d[n][i][k];
cout<<res<<endl;
return 0;
}

「SCOI2005」互不侵犯 (状压DP)的更多相关文章

  1. BZOJ1087[SCOI2005]互不侵犯——状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...

  2. P1896 [SCOI2005]互不侵犯 状压dp

    正解:状压dp 解题报告: 看到是四川省选的时候我心里慌得一批TT然后看到难度之后放下心来觉得大概没有那么难 事实证明我还是too young too simple了QAQ难到爆炸TT我本来还想刚一道 ...

  3. SCOI2005 互不侵犯 [状压dp]

    题目传送门 题目大意:有n*n个格子,你需要放置k个国王使得它们无法互相攻击,每个国王的攻击范围为上下左走,左上右上左下右下,共8个格子,求最多的方法数 看到题目,是不是一下子就想到了玉米田那道题,如 ...

  4. [SCOI2005]互不侵犯 (状压$dp$)

    题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 位国王,且最后一位状态为 \(k\) . 然后就可以很轻松的转移了 ...

  5. NOI P1896 互不侵犯 状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  6. LG3092 「USACO2013NOV」No Change 状压DP

    问题描述 https://www.luogu.org/problem/P3092 题解 观察到 \(k \le 16\) ,自然想到对 \(k\) 状压. 设 \(opt[i]\) 代表使用硬币状况为 ...

  7. luogu1896 [SCOI2005]互不侵犯 状压DP

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.( 1 <=N <=9, 0 ...

  8. LG1879 「USACO2006NOV」Corn Fields 状压DP

    问题描述 LG1879 题解 设\(opt[i][j]\)代表前\(i\)行,且第\(i\)行状态为\(j\)的方案数. 枚举\(j\),再枚举\(k\),\(k\)为上一行的状态. 判断\(j,k\ ...

  9. LOJ #6037.「雅礼集训 2017 Day4」猜数列 状压dp

    这个题的搜索可以打到48分…… #include <cstdio> #include <cstring> #include <algorithm> ; bool m ...

随机推荐

  1. Linux常用命令(df&dh)

    在Linux下查看磁盘空间使用情况,最常使用的就是du和df了.然而两者还是有很大区别的,有时候其输出结果甚至非常悬殊. du的工作原理 du命令会对待统计文件逐个调用fstat这个系统调用,获取文件 ...

  2. 图像质量评估论文 | Deep-IQA | IEEETIP2018

    主题列表:juejin, github, smartblue, cyanosis, channing-cyan, fancy, hydrogen, condensed-night-purple, gr ...

  3. Spring Cloud Gateway 跨域 CORS 配置方式实现

    网上找了一堆文章全是说这样写无效 globalcors: cors-configurations: '[/**]': allowCredentials: true allowedOriginPatte ...

  4. Flutter 基础组件:输入框和表单

    前言 Material组件库中提供了输入框组件TextField和表单组件Form. 输入框TextField 接口描述 const TextField({ Key key, // 编辑框的控制器,通 ...

  5. 剑指offer 面试题9:用两个栈实现队列

    题目描述 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 使用栈实现队列的下列操作:push(x) -- 将一个元素放入队列的尾部.pop() -- 从队列首部移 ...

  6. PAT甲级练习 1087 All Roads Lead to Rome (30分) 字符串hash + dijkstra

    题目分析: 这题我在写的时候在PTA提交能过但是在牛客网就WA了一个点,先写一下思路留个坑 这题的简单来说就是需要找一条最短路->最开心->点最少(平均幸福指数自然就高了),由于本题给出的 ...

  7. 关于maven多module的依赖问题

    之前的项目因为历史的原因,都是一个project里只包含了一个module,今年进入了新的项目组,出现了多个module,最近刚好也是在学<maven实战>因此想要将这个东西记录下来 工程 ...

  8. 【Linux】dd命令进行磁盘备份

    运用dd命令,将/dev/sdb磁盘中所有的数据全部备份到/dev/sdc磁盘上,需要的命令如下 dd  if=/dev/sdb of=/dev/sdc bs=1024k 说明,if是需要备份的磁盘  ...

  9. 【TNS】TNS-00515 TNS-12560 TNS-12545解决方案

    今天同事的plsql连接不上数据库,我用他的本地tnsping是不通的,于是上服务器上查看下,结果发现监听没起来,不知道怎么就断了 再次尝试重启 lsnrctl start 发现直接报错: NSLSN ...

  10. kubernets之pod的标签的使用

    一 对于kubernets里面的资源标记完成之后的使用 1 node节点标签的应用(将资源调度到特定的节点上) #kubia-gpu.ymlapiVersion: v1 kind: Pod metad ...