题目

给定一个数列,有\(m\)组询问

定义

\[\large f(x-1)={a_x}^{f(x)}
\]

若 \(f(r)=a_r\) 求 \(f(l)\)

对固定的 \(mod\) 取模


分析

根据扩展欧拉定理

\[\large
\begin{cases}
a^x\equiv a^{x\bmod \varphi(p)+\varphi(p)}\pmod p,x\geq \varphi(p)\\
a^x,otherwise
\end{cases}
\]

一次\(\varphi(p)\)至少会将下一层的模数缩小一半(\(p>2\))

那么最多\(\log p\)次就会结束递归,那么时间复杂度为\(O(m\log mod)\)

注意一旦\(x\geq \varphi(p)\)一定要补上\(a^{\varphi(p)}\)才能保证正确性


代码

#include <cstdio>
#include <cctype>
#include <map>
#define rr register
using namespace std;
int n,mod,l,r,a[100011];
map<int,int>phi;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed min(int a,int b){return a<b?a:b;}
inline void Get_Phi(int &p){
rr int now=p,m=p;
for (rr int i=2;i*i<=p;++i)
if (p%i==0){
now=now/i*(i-1);
while (p%i==0) p/=i;
}
if (p>1) now=now/p*(p-1);
p=phi[m]=now;
}
inline signed ksm(int x,int y,int p){
rr long long ans=1,t;
for (;y;y>>=1){
if (y&1){
t=ans*x;
if (t>=p) t=t%p+p;
ans=t;
}
t=1ll*x*x;
if (t>=p) t=t%p+p;
x=t;
}
return ans;
}
inline signed answ(int x,int p){
if (x==r+1||p==1) return 1;
rr int mi=answ(x+1,phi[p]);
return ksm(a[x],mi,p);
}
signed main(){
n=iut(),mod=iut();
for (rr int t=mod;t>1;Get_Phi(t));
for (rr int i=1;i<=n;++i) a[i]=iut();
for (rr int Q=iut();Q;--Q)
l=iut(),r=iut(),print(answ(l,mod)%mod),putchar(10);
return 0;
}

#扩展欧拉定理#CF906D Power Tower的更多相关文章

  1. CF906D Power Tower

    扩展欧拉定理 CF906D Power Tower 洛谷交的第二个黑题 题意 给出一个序列\(w-1,w_2,\cdots,w_n\),以及\(q\)个询问 每个询问给出\(l,r\),求: \[w_ ...

  2. 【CodeForces】906 D. Power Tower 扩展欧拉定理

    [题目]D. Power Tower [题意]给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案.n,q<=10^5,m,ai<=10^9. [算法]扩展欧拉定理 [ ...

  3. CodeForces 907F Power Tower(扩展欧拉定理)

    Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is u ...

  4. [CodeForces - 906D] Power Tower——扩展欧拉定理

    题意 给你 $n$ 个 $w_i$ 和一个数 $p$,$q$个询问,每次询问一个区间 $[l,r] $,求 $w_l ^{w_{l+1}^{{\vdots}^{w_r}}} \ \% p$ 分析 由扩 ...

  5. [luogu4139]上帝与集合的正确用法【欧拉定理+扩展欧拉定理】

    题目大意 让你求\(2^{2^{2^{\cdots}}}(mod)P\)的值. 前置知识 知识1:无限次幂怎么解决 让我们先来看一道全国数学竞赛的一道水题: 让你求解:\(x^{x^{x^{\cdot ...

  6. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  7. [Codeforces]906D Power Tower

    虽说是一道裸题,但还是让小C学到了一点姿势的. Description 给定一个长度为n的数组w,模数m和询问次数q,每次询问给定l,r,求: 对m取模的值. Input 第一行两个整数n,m,表示数 ...

  8. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  9. SHOI 2017 相逢是问候(扩展欧拉定理+线段树)

    题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度 ...

  10. bzoj3884: 上帝与集合的正确用法 扩展欧拉定理

    题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...

随机推荐

  1. AirtestProject浅尝辄止

    AirtestProject是什么 AirtestProject是由网易游戏推出的UI自动化测试解决方案,主要包含3部分内容: 1.Airtest框架:跨平台的,基于图像识别的UI自动化测试框架,支持 ...

  2. CSDN的Markdown编辑器使用说明

    这里写自定义目录标题 欢迎使用Markdown编辑器 新的改变 功能快捷键 合理的创建标题,有助于目录的生成 如何改变文本的样式 插入链接与图片 如何插入一段漂亮的代码片 生成一个适合你的列表 创建一 ...

  3. 麒麟系统开发笔记(六):安装QtCreator开发IDE中的中文输入环境Fcitx输入法

    前言   中文输入法,QtCreator中无法输入中文也是ubuntu中一个常规问题,在麒麟系统中也此问题,要解决此问题,主要是安装和使用Fcitx输入法.  本文章最终结果是失败的,但是读者的系统未 ...

  4. 如何在矩池云上安装语音识别模型 Whisper

    如何在矩池云上安装语音识别模型 Whisper Whisper 是 OpenAI 近期开源的一个语音识别的模型,研究人员基于 680,000 小时的标记音频数据进行训练,它同时也是一个多任务模型,可以 ...

  5. Elasticsearch使用实战以及代码详解

    Elasticsearch 是一个使用 Java 语言编写.遵守 Apache 协议.支持 RESTful 风格的分布式全文搜索和分析引擎,它基于 Lucene 库构建,并提供多种语言的 API.El ...

  6. 【Azure API 管理】APIM的容量指标(Capacity)数据异常高的情况记录

    问题描述 APIM从标准版降级到基础版,在没有用户使用的情况,Capacity的指标平均显示在80%以上. 这是什么异常情况呢? 问题分析 APIM的容量指标(Capacity)是 API 管理实例中 ...

  7. 【Azure 应用服务】App Service / Function App 修改系统时区为中国时区的办法(Azure中所有服务的默认时间都为UTC时间,转换为北京时间需要+8小时)

    问题描述 在Azure的 App Service / Function App 服务中,如果是在Windows系统中,可以通过添加Application Setting来转换为中国时间(WEBSITE ...

  8. 如何避免MYSQL主从延迟带来的读写问题?

    在MYSQL 部署架构选型上,许多公司都会用到主从读写分离的架构,如下是一个一主一从的架构,主库master负责写入,从库slave进行读取. 但是既然是读写分离,必然会面临这样一个问题,当在主库上进 ...

  9. Django进阶之路由层和视图层

    Django的路由系统 [1]什么是URL配置(URLconf) URL调度器 | Django 文档 | Django (djangoproject.com) URL配置(URLconf)就像Dja ...

  10. jsPlumb导航器

    开源项目地址:https://gitee.com/easyxaf/jsplumb-navigator 前言 jsPlumb可用于连接DOM元素,它不依赖框架,所以与主流框架都可以无缝的集成.但比较遗憾 ...