Codeforces Round #329 (Div. 2)

D. Happy Tree Party

time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Bogdan has a birthday today and mom gave him a tree consisting of n vertecies. For every edge of the tree i, some number x**i was written on it. In case you forget, a tree is a connected non-directed graph without cycles. After the present was granted, m guests consecutively come to Bogdan's party. When the i-th guest comes, he performs exactly one of the two possible operations:

  1. Chooses some number y**i, and two vertecies a**i and b**i. After that, he moves along the edges of the tree from vertex a**i to vertex b**i using the shortest path (of course, such a path is unique in the tree). Every time he moves along some edge j, he replaces his current number y**i by , that is, by the result of integer division y**i div x**j.
  2. Chooses some edge p**i and replaces the value written in it xpi by some positive integer c**i < xpi.

As Bogdan cares about his guests, he decided to ease the process. Write a program that performs all the operations requested by guests and outputs the resulting value y**i for each i of the first type.

Input

The first line of the input contains integers, n and m (2 ≤ n ≤ 200 000, 1 ≤ m ≤ 200 000) — the number of vertecies in the tree granted to Bogdan by his mom and the number of guests that came to the party respectively.

Next n - 1 lines contain the description of the edges. The i-th of these lines contains three integers u**i, v**i and x**i (1 ≤ u**i, v**i ≤ n, u**i ≠ v**i, 1 ≤ x**i ≤ 1018), denoting an edge that connects vertecies u**i and v**i, with the number x**i initially written on it.

The following m lines describe operations, requested by Bogdan's guests. Each description contains three or four integers and has one of the two possible forms:

  • 1 a**i b**i y**i corresponds to a guest, who chooses the operation of the first type.
  • 2 p**i c**i corresponds to a guests, who chooses the operation of the second type.

It is guaranteed that all the queries are correct, namely ,1 ≤ p**i ≤ n - 1 , wherexpirepresents a number written on edgep**iat this particular moment of time that is not necessarily equal to the initial valuexpi

Output

For each guest who chooses the operation of the first type, print the result of processing the value y**i through the path from a**i to b**i.

Examples

input

Copy

6 61 2 11 3 71 4 42 5 52 6 21 4 6 172 3 21 4 6 171 5 5 202 4 11 5 1 3

output

Copy

24203

input

Copy

5 41 2 71 3 33 4 23 5 51 4 2 1001 5 4 12 2 21 1 3 4

output

Copy

202

Note

Initially the tree looks like this:

The response to the first query is: = 2

After the third edge is changed, the tree looks like this:

The response to the second query is: = 4

In the third query the initial and final vertex coincide, that is, the answer will be the initial number 20.

After the change in the fourth edge the tree looks like this:

In the last query the answer will be: = 3

题意:

可以去这个链接阅读中文题意:

https://vjudge.net/problem/CodeForces-593D#author=AwayWithCorrect

思路:

  • 1:边权转为点权建树:

    确定一个root后,在dfs过程中,把边权值放在深度较大的节点的点权上。

    这样建树的话,询问路径\(x->y\)的时候的边权sum和,实际求的过程中,点权只需要计算从(x到y路径的中的下一个节点z)到y节点的点权sum和。因为x的点权是root到x中的x上方的边权,并不在x到y的路径中。

  • 2:树链剖分,同时用线段树维护连续点权的累乘积。

  • 3:当线段树中的一个线段权值>1e18后,给该线段加个标记,或者权值定为0,因为询问是<=1e18的,那么如果询问包括了这个权值,答案一定是0.

  • 4:更新边的权值时,直接用线段树更新那条边中深度更大的点权即可。

  • 5:在树链剖分询问路径的过程中,别忘记1中讲到了去掉x节点点权,可以直接在最后的一个query中把id[x](x的dfs序)改为id[x]+1,因为一条链中dfs序时连续的。

判定x*y是否会超过1e18可以用这个函数的写法来求:

long long mul(long long aaa,long long bbb)
{
if(aaa==0||bbb==0)
return 0;
if(INF/aaa<bbb)
{
return 0;
}
else
return aaa*bbb;
}

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 600010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n, m;
int root;
ll a[maxn];// 初始点权
ll wt[maxn];// 新建编号点权。
int cnt;// 编号用的变量
int top[maxn];// 所在重链的顶点编号
int id[maxn];//节点的新编号。
typedef pair<int, ll> pil;
std::vector<pil> son[maxn];
int SZ[maxn];// 子数大小
int wson[maxn];// 重儿子
int fa[maxn];// 父节点
int dep[maxn];// 节点的深度 void dfs1(int id, int pre, int step) // 维护出sz,wson,fa,dep
{
dep[id] = step;
fa[id] = pre;
SZ[id] = 1;
int maxson = -1;
for (auto x : son[id])
{
if (x.fi != pre)
{
a[x.fi] = x.se;
dfs1(x.fi, id, step + 1);
SZ[id] += SZ[x.fi];
if (SZ[x.fi] > maxson)
{
maxson = SZ[x.fi];
wson[id] = x.fi;
}
}
} } //处理出top[],wt[],id[]
void dfs2(int u, int topf)
{
id[u] = ++cnt;
wt[cnt] = a[u];
top[u] = topf;
if (!wson[u]) // 没儿子时直接结束
{
return ;
}
dfs2(wson[u], topf); // 先处理重儿子
for (auto x : son[u])
{
if (x.fi == wson[u] || x.fi == fa[u]) //只处理轻儿子
{
continue;
}
dfs2(x.fi, x.fi); // 每个轻儿子以自己为top
}
} struct node
{
int l, r;
ll sum;
} segment_tree[maxn << 2]; int getwei(ll x)
{
int res = 0;
while (x)
{
res++;
x /= 10;
}
return res;
}
ll num_1e18 = 1e18;
ll getcheng(ll v1, ll v2)
{
if (v1 == 0ll || v2 == 0ll)
{
return 0ll;
}
int x1 = getwei(v1);
int x2 = getwei(v2);
ll res;
if (x1 + x2 > 20)
{
res = 0ll;
} else if (x1 + x2 == 20 && num_1e18 / v2 == v2)
{
res = 0ll;
} else
{
res = (v1 * v2);
}
return res;
}
void pushup(int rt)
{
segment_tree[rt].sum = getcheng(segment_tree[rt << 1].sum, segment_tree[rt << 1 | 1].sum);
}
void build(int rt, int l, int r)
{
segment_tree[rt].l = l;
segment_tree[rt].r = r;
if (l == r)
{
segment_tree[rt].sum = wt[l];
return;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
pushup(rt);
} void update(int rt, int pos, ll val)
{
if (segment_tree[rt].l == pos && segment_tree[rt].r == pos)
{
segment_tree[rt].sum = min(segment_tree[rt].sum, val);
return ;
}
int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;
if (mid >= pos)
{
update(rt << 1, pos, val);
}
if (mid < pos)
{
update(rt << 1 | 1, pos, val);
}
pushup(rt);
} ll query(int rt, int l, int r)
{
if (l > r)
{
return 1ll;
}
if (segment_tree[rt].l >= l && segment_tree[rt].r <= r)
{
return segment_tree[rt].sum;
}
int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;
ll res = 1ll;
if (mid >= l)
{
res = getcheng(res, query(rt << 1, l, r));
}
if (mid < r)
{
res = getcheng(res, query(rt << 1 | 1, l, r));
}
return res; } void uprange(int x, int y, ll k)
{ if (dep[x] < dep[y]) // 使x的top深度较大
{
swap(x, y);
}
update(1, id[x], k);
} ll qrange(int x, int y)
{
ll ans = 1ll;
while (top[x] != top[y])
{
if (dep[top[x]] < dep[top[y]])
{
swap(x, y);
}
ans = getcheng(ans, query(1, id[top[x]], id[x]));
x = fa[top[x]];
}
if (dep[x] > dep[y])
swap(x, y);
ans = getcheng(ans, query(1, id[x] + 1, id[y]));
return ans;
}
pii info[maxn];
int main()
{
// freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
// freopen("D:\\common_text\\code_stream\\out.txt","w",stdout); gbtb;
// chu(getwei(1e9));
cin >> n >> m;
root = 1;
int u, v;
ll val;
repd(i, 1, n - 1)
{
cin >> u >> v >> val;
son[u].pb(mp(v, val));
son[v].pb(mp(u, val));
info[i] = mp(u, v);
}
dfs1(root, 0, 1);
dfs2(root, root);
build(1, 1, n);
int op, x, y;
ll z;
int isok = 0;
if (info[1].fi == 7610 && info[1].se == 132654)
{
isok = 1;
}
while (m--)
{
cin >> op;
if (op == 1)
{
cin >> x >> y >> z;
val = qrange(x, y);
// if (isok)
// {
// cout << " 1: " << val << endl;
// }
if (val == 0)
{
cout << val << endl;
} else
{
cout << z / val << endl;
}
} else if (op == 2)
{
cin >> x >> z;
uprange(info[x].fi, info[x].se, z);
}
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}  

D. Happy Tree Party CodeForces 593D【树链剖分,树边权转点权】的更多相关文章

  1. 4.12 省选模拟赛 LCA on tree 树链剖分 树状数组 分析答案变化量

    LINK:duoxiao OJ LCA on Tree 题目: 一道树链剖分+树状数组的神题. (直接nQ的暴力有50. 其实对于树随机的时候不难想到一个算法 对于x的修改 暴力修改到根. 对于儿子的 ...

  2. hdu 3966 Aragorn's Story(树链剖分+树状数组/线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题意: 给出一棵树,并给定各个点权的值,然后有3种操作: I C1 C2 K: 把C1与C2的路 ...

  3. Aragorn's Story 树链剖分+线段树 && 树链剖分+树状数组

    Aragorn's Story 来源:http://www.fjutacm.com/Problem.jsp?pid=2710来源:http://acm.hdu.edu.cn/showproblem.p ...

  4. 洛谷 P3384 【模板】树链剖分-树链剖分(点权)(路径节点更新、路径求和、子树节点更新、子树求和)模板-备注结合一下以前写的题目,懒得写很详细的注释

    P3384 [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节 ...

  5. (简单) POJ 3321 Apple Tree,树链剖分+树状数组。

    Description There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow ...

  6. Codeforces Round #425 (Div. 2) Problem D Misha, Grisha and Underground (Codeforces 832D) - 树链剖分 - 树状数组

    Misha and Grisha are funny boys, so they like to use new underground. The underground has n stations ...

  7. Codeforces Round #425 (Div. 2) D 树链剖分 + 树状数组维护区间

    一看就知道 可以LCA判断做 也可以树链剖分拿头暴力 然而快速读入和线段树维护区间会T70 于是只能LCA? 线段树的常数不小 于是需要另外一种办法来进行区间加减和查询区间和 就是使用树状数组 这个题 ...

  8. dsu+树链剖分+树分治

    dsu,对于无修改子树信息查询,并且操作支持undo的问题 暴力dfs,对于每个节点,对所有轻儿子dfs下去,然后再消除轻儿子的影响 dfs重儿子,然后dfs暴力恢复轻儿子们的影响,再把当前节点影响算 ...

  9. HDU 3966 /// 树链剖分+树状数组

    题意: http://acm.hdu.edu.cn/showproblem.php?pid=3966 给一棵树,并给定各个点权的值,然后有3种操作: I x y z : 把x到y的路径上的所有点权值加 ...

  10. 7.18 NOI模拟赛 树论 线段树 树链剖分 树的直径的中心 SG函数 换根

    LINK:树论 不愧是我认识的出题人 出的题就是牛掰 == 他好像不认识我 考试的时候 只会写42 还有两个subtask写挂了 拿了37 确实两个subtask合起来只有5分的好成绩 父亲能转移到自 ...

随机推荐

  1. C#使用MPI进行高性能计算

    MPI.NET是用于Microsoft.NET环境的高性能.易于使用的消息传递接口(MPI)实现.mpi是编写在分布式内存系统(如计算集群)上运行的并行程序的事实上的标准,并且得到了广泛的实现.大多数 ...

  2. django 之(五) --- 验证码|富文本|邮箱短信

    验证码 在用户登录,注册以及一些敏感操作的时候,我们为了防止服务器被暴力请求,或爬虫爬取,我们可以使用验证码进行过滤,减轻服务器的压力. 原生实现: 库名:pip install Pillow     ...

  3. Note 1: Good

    Note 1: Good 1. The collection of Linkun's [1]: 1.1coolJoy says "cool" when he heard that ...

  4. 解决element-ui按需引入不了Scrollbar的问题

    一.报错原因 在我想按需引入element-ui时,突然报错: 这个报错来的有点措不及防.明明在页面当中能够使用,为仕么在单独引入时却不能引用了,真是百思不得其解. 经过在百度上的查找才知道,原来Sc ...

  5. springboot简易上传下载

    1.导入上传下载依赖: <dependency> <groupId>commons-fileupload</groupId> <artifactId>c ...

  6. 复合模式MVC

    这里也只说一下简单的原理. Model:模型实现处理数据的切逻辑. View:视图呈现模型的数据和状态. Control:解读视图对模型的操作. 视图和模型之间使用观察者模式,只要模型的状态改变视图立 ...

  7. 创建安全的 Netty 程序

    1.使用 SSL/TLS 创建安全的 Netty 程序 SSL 和 TLS 是众所周知的标准和分层的协议,它们可以确保数据时私有的 Netty提供了SSLHandler对网络数据进行加密 使用Http ...

  8. Proxy 和aop

    Proxy 就是代理,意思就是 你不用去做,别人代替你去处理 先来个静态代理 public interface Hello { void say(String name); } 被代理类 public ...

  9. (十三)mybatis 整合 ehcache

    目录 ehcache mybatis 的 Cache 接口 整合步骤 ehcache ehcache 是一个分布式缓存框架 ! 为什么需要分布式缓存? 在大型的项目中,服务器是肯定不止一台的,每台服务 ...

  10. day04_XPATH提取数据

    1.XML简介 1.1.定义 ​ 可扩展标记语言(EXtensible Markup Language) 1.2.特点 一种标记语言,很类似 HTML XML 的标签需要我们自行定义 被设计为具有自我 ...