Jacobi symbol(裸雅可比符号)
Jacobi symbol
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 625 Accepted Submission(s): 258
For the calculation of these symbol there are the following rules, valid only for distinct odd prime numbers p, q and integers a, b not divisible by p:
The Jacobi symbol, J (a, n) ,is a generalization of the Legendre symbol ,L (a, p).It defines as :
1. J (a, n) is only defined when n is an odd.
2. J (0, n) = 0.
3. If n is a prime number, J (a, n) = L(a, n).
4. If n is not a prime number, J (a, n) = J (a, p1) *J (a, p2)…* J (a, pm), p1…pm is the prime factor of n.
3 9
3 13
0
1
/*
题意:裸的雅可比符号,雅可比符号是勒让德符号的延伸,J(a,n)如果n是素数那么J(a,n)=L(a,n);否则J(a,n)=J(a,p1)*J(a,p2)*...J(a,pm);
p1...pm是n的质因子,勒让德符号:定义为 L(a,n)=0 n mod a=0;
L(a,n)=1 存在X使得 X^2 mod a=0;
L(a,n)=-1 不存在X使得 X^2 mod a=0;
#错误:求雅可比符号的时候,按照定义爆的,不知道哪里错了...分解质因子板套错了 #改进:勒让德符号n是偶数的时候要特判,特别要注意的时候质因子也有偶数,就是2 */
#include<bits/stdc++.h>
#define ll long long
using namespace std;
/**********************勒让德符号************************/
ll exp(ll a,ll b,ll p)
{
ll res=;
for(;b;b>>=)
{
if(b&)
res=(res*a)%p;
a=(a*a)%p;
}
return res;
} int cal(int a,int n)
{
if(a%n==)
return ;
else
return exp(a,(n-)/,n)==?:-;
}
/**********************勒让德符号************************/ /***********************筛素数*************************/
const int M = ;
int p[M], pNum=;
bool f[M]; void Prime()
{
int i, j;
for(i = ; i < ; i++)
{
if(!f[i])//i是素数
{
p[pNum++] = i; //将素数打到数组中
}
for(j = ; j < pNum && p[j] * i < M; j++ ) //将i的倍数都调出来因为,素数的倍数肯定不是素数
{
f[p[j]*i] = ;
if(!(i%p[j]))
break;
}
}
}
/***********************筛素数*************************/
int a,n;
int cur;
int main(){
Prime();
// freopen("in.txt","r",stdin);
while(scanf("%d%d",&a,&n)!=EOF){
if(f[n]==){//如果n是素数
printf("%d\n",cal(a,n));
continue;
}
cur=;
for(int i=;n!=&&i<pNum;i++){
if(n%p[i]==){//这个是质因子
int total=;
while(n%p[i]==){
total++;
n/=p[i];
}
int tmp=cal(a,p[i]);
if(total%==&&tmp==-)//如果n里面有偶数个的p,那么p乘偶数肯定不是奇数,就不符合勒让德符号定义了
tmp=;
cur*=tmp;
}
}
printf("%d\n",cur);
}
return ;
}
Jacobi symbol(裸雅可比符号)的更多相关文章
- hdu3589 Jacobi symbol(二次剩余 数论题)
本题的注意点:n=p1*p2*p3......Pm 解法:直接利用公式a^((p-1)/2)=(a/p)mod p 即可求解. #include<stdio.h> #include< ...
- HDU 3589 Jacobi symbol
彻底对数学绝望了 #include <cstdio> #include <cmath> int flag[1005],p[500],a; int d[100]; int ini ...
- PHP7函数大全(4553个函数)
转载来自: http://www.infocool.net/kb/PHP/201607/168683.html a 函数 说明 abs 绝对值 acos 反余弦 acosh 反双曲余弦 addcsla ...
- HDU题解索引
HDU 1000 A + B Problem I/O HDU 1001 Sum Problem 数学 HDU 1002 A + B Problem II 高精度加法 HDU 1003 Maxsu ...
- DotNet加密方式解析--非对称加密
新年新气象,也希望新年可以挣大钱.不管今年年底会不会跟去年一样,满怀抱负却又壮志未酬.(不过没事,我已为各位卜上一卦,卦象显示各位都能挣钱...).已经上班两天了,公司大部分人还在休假,而我早已上班, ...
- PHP类和函数注释大全
每次要用PHP的某个功能的时候,都要去查一下,于是决定将PHP所有类和函数都整理出来,加上注释 大致实现 将php.jar文件解压,取出目录stubs 将stubs中的所有php文件中的注释去掉,并做 ...
- php小数加减精度问题,比特币计算精度问题
php小数加减精度问题,比特币计算精度问题 在php开发时,有小数加减的场景.结果发现不能够等于预想的值,bccomp比较二个高精确度数字.语法: int bccomp(string left ope ...
- 【加解密专辑】对接触到的PGP、RSA、AES加解密算法整理
先贴代码,有空再整理思路 PGP加密 using System; using System.IO; using Org.BouncyCastle.Bcpg; using Org.BouncyCastl ...
- C++ 实现Biginteger
网上C++版Biginteger参差不齐,一下子没有找到一个令人满意Biginteger,最近用c++改写了一下C#版 BigInteger,可以用于RSA大素数的生成,分享给大家.也请大家批评指正改 ...
随机推荐
- Python 接口测试(四)
五:python数列化和反序列化 把python的对象编码转换为json格式的字符串,反序列化可以理解为:把json格式 字符串解码为python数据对象.在python的标准库中,专门提供了json ...
- AngularJS--控制器(Controller)
点击查看AngularJS系列目录 转载请注明出处:http://www.cnblogs.com/leosx/ 理解控制器 在AngularJS的控制器中,构造函数会有Scope参数. 当一个控制器通 ...
- java集合系列——List集合之ArrayList介绍(二)
一:List概述 List是 java.util包下面的类,从<a href="http://blog.csdn.net/u010648555/article/details/5604 ...
- Rundeck部署和基本使用
rundeck 介绍 Rundeck 是一款能在数据中心或云环境中的日常业务中使程序自动化的开源软件.Rundeck 提供了大量功能,可以减轻耗时繁重的体力劳动.团队可以相互协作,分享如何过程自动化, ...
- 详解MySQL基准测试和sysbench工具
前言 作为一名后台开发,对数据库进行基准测试,以掌握数据库的性能情况是非常必要的.本文介绍了MySQL基准测试的基本概念,以及使用sysbench对MySQL进行基准测试的详细方法. 文章有疏漏之处, ...
- bzoj4403(模板题)
序列统计,将答案转化,然后就是Lucas的模板题,用费马小定理瞎搞. #include<cstdio> #include<iostream> #include<algor ...
- Redis info 参数详解
Redis Info 命令以一种易于理解和阅读的格式,返回关于 Redis 服务器的各种信息和统计数值. 通过给定可选的参数 section ,可以让命令只返回某一部分的信息: server : 一般 ...
- java数据库编程之高级查询
第三章:高级查询(-) 3.1:修改表 3.1.1:修改表 语法: Alter table <旧表名> rename [ TO] <新表名>; 例子:Alter table ` ...
- MongoDB的全文检索(Text Search)功能
自己的项目中用到了mongodb,需要做一个搜索功能,刚开始不知道怎么搞,查了mongodb有个全文检索功能. 全文检索分为两步 第一,建立索引 db.stores.createIndex( { na ...
- 【笔记】如何查看HTTP请求头&&【实验吧】天下武功唯快不破
打开Chrome浏览器,点击右上角“三”按钮. 点击工具-----再点击开发者工具 找到Network选项框.以百度经验页面为例,点击任务选框来查看网络请求流 在Network框内会有所有的请 ...