Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
概
本文是对现有的残差网络结构的探索, grid search一个鲁棒的结构.
主要内容
大家普遍认为越大的模型鲁棒性能会越好, 某种程度上如此, 但是现有的WRN(Wide ResNet)是为干净精度设计的, 对于鲁棒性并不是最优的.
现在的WRN有三个stage:

其越到后面越宽(即卷积核个数越多).
比如标准的WRN-34-10, 每个stage有5个block, 均乘上了factor=10.
本文便是探究block数量(即网络深度), 以及factor(即宽度)的影响.
深度

由上图可知, 削弱最后一个stage能够有效提升鲁棒性.
宽度

同样的, 削弱最后一个stage能够有效提升鲁棒性.
结合二者, 作者发现, 宽度比深度更有效, 维持10-10-4的比例的模型是最优的.
若进一步改为20-20-8(同比例scale), 鲁棒性接近饱和.
感觉给人的启示是, 最后一stage不能有太强的表达能力, 为什么?
我感觉还是残差连接的原因啊.
代码
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks的更多相关文章
- [Box] Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint
目录 概 主要内容 LSGD Box 初始化 Box for Resnet 代码 Cyr E C, Gulian M, Patel R G, et al. Robust Training and In ...
- (转)Understanding, generalisation, and transfer learning in deep neural networks
Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017 Thi ...
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
- Classifying plankton with deep neural networks
Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...
- Why are Eight Bits Enough for Deep Neural Networks?
Why are Eight Bits Enough for Deep Neural Networks? Deep learning is a very weird technology. It evo ...
- 论文翻译:2018_Source localization using deep neural networks in a shallow water environment
论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关 ...
- Training Deep Neural Networks
http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html //转载于 Training Deep Neural ...
- On Explainability of Deep Neural Networks
On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...
- Introduction to Deep Neural Networks
Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...
随机推荐
- Java 数据类型转化
目录 Java类型转化 基本数据类型自动类型转换 自动类型提升 强制类型转换 - 自动类型提升的逆运算 int与long int类型与String类型 int类型转换成String类型 方法1:+ 拼 ...
- 学习java 7.18
学习内容: Lambda表达式的格式:(形式参数) -> {代码块} 如果有多个参数,参数之间用逗号隔开 new Thread( () -> { System.out.pri ...
- keybd_event模拟键盘按键,mouse_event怎么用
从 模仿UP主,用Python实现一个弹幕控制的直播间! - 蛮三刀酱 - 博客园 (cnblogs.com) 知道了 PyAutoGUI: * Moving the mouse and clicki ...
- accommodate ~ ache
accommodate The accommodation reflex [反射] (or accommodation-convergence [会聚] reflex) is a reflex act ...
- linux 内存变量的分布
我们知道,linux通过虚拟内存管理进程的内存(进程的地址空间),而进程的地址空间分布如下 : 从进程的空间中可以看出,内存中的变量有的来自可执行elf文件,在elf文件中已经分配好存储空间,有的是在 ...
- css相关,position定位详解
CSS 有两个最重要的基本属性,前端开发必须掌握:display 和 position. display属性指定网页的布局.两个重要的布局,弹性布局flex和网格布局grid. 本文介绍非常有用的po ...
- Advanced C++ | Conversion Operators
In C++, the programmer abstracts real world objects using classes as concrete types. Sometimes it is ...
- Classs类
Classs类如何获得 获得Class对象 方式一: 通过Object类中的getClass()方法 方式二: 通过 类名.class 获取到字节码文件对象( 方式三: 通过Class类中的方法(将类 ...
- 3.使用Spring Data ElasticSearch操作ElasticSearch(5.6.8版本)
1.引入maven坐标 <!--spring-data-elasticsearch--><dependency> <groupId>org.springframew ...
- ssm+mysql+jsp打造在线考试系统WeKnow-学生端
一.登陆模块 前台提交账号和密码传到后台处理控制层 1.1 首先是控制器 @RequestMapping(value="/studentLogin", method=Request ...