Huang H., Wang Y., Erfani S., Gu Q., Bailey J. and Ma X. Exploring architectural ingredients of adversarially robust deep neural networks. In Advances in Neural Information Processing Systems (NIPS), 2021

本文是对现有的残差网络结构的探索, grid search一个鲁棒的结构.

主要内容

大家普遍认为越大的模型鲁棒性能会越好, 某种程度上如此, 但是现有的WRN(Wide ResNet)是为干净精度设计的, 对于鲁棒性并不是最优的.

现在的WRN有三个stage:

其越到后面越宽(即卷积核个数越多).

比如标准的WRN-34-10, 每个stage有5个block, 均乘上了factor=10.

本文便是探究block数量(即网络深度), 以及factor(即宽度)的影响.

深度

由上图可知, 削弱最后一个stage能够有效提升鲁棒性.

宽度

同样的, 削弱最后一个stage能够有效提升鲁棒性.

结合二者, 作者发现, 宽度比深度更有效, 维持10-10-4的比例的模型是最优的.

若进一步改为20-20-8(同比例scale), 鲁棒性接近饱和.

感觉给人的启示是, 最后一stage不能有太强的表达能力, 为什么?

我感觉还是残差连接的原因啊.

代码

原文代码

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks的更多相关文章

  1. [Box] Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint

    目录 概 主要内容 LSGD Box 初始化 Box for Resnet 代码 Cyr E C, Gulian M, Patel R G, et al. Robust Training and In ...

  2. (转)Understanding, generalisation, and transfer learning in deep neural networks

    Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   Thi ...

  3. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  4. Classifying plankton with deep neural networks

    Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...

  5. Why are Eight Bits Enough for Deep Neural Networks?

    Why are Eight Bits Enough for Deep Neural Networks? Deep learning is a very weird technology. It evo ...

  6. 论文翻译:2018_Source localization using deep neural networks in a shallow water environment

    论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关 ...

  7. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  8. On Explainability of Deep Neural Networks

    On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...

  9. Introduction to Deep Neural Networks

    Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...

随机推荐

  1. cvc-complex-type.2.3: Element 'servlet' cannot have character [children], because the type's content

    错误原因:粘贴代码 <servlet> <servlet-name>barServlet</servlet-name> <servlet-class>S ...

  2. 学习java 7.14

    学习内容: 标准输入输出流 输出语言的本质:是一个标准的输出流 字节打印流 字符打印流 对象序列化流 明天内容: 进程和线程 遇到问题: 用对象序列化流序列化一个对象后,假如我们修改了对象所属的类文件 ...

  3. 大数据学习day38----数据仓库01-----区域字典的生成

    更多内容见文档 1. 区域字典的生成 mysql中有如下表格数据 现要将这类数据转换成(GEOHASH码, 省,市,区)如下所示 (1)第一步:在mysql中使用sql语句对表格数据进行整理(此处使用 ...

  4. [转]sizeof计算空间大小的总结

    原文链接:http://www.cnblogs.com/houjun/p/4907622.html 关于sizeof的总结 1.sizeof的使用形式:sizeof(var_name)或者sizeof ...

  5. 复制virtualbox虚拟硬盘

    D:\VirtualBox\VBoxManage.exe clonevdi F:\virtualbox\rac1\rac1.vdi F:\virtualbox\rac2\rac2.vdi 虚拟机软件安 ...

  6. 【Linux】【Basis】文件

    refer to: https://en.wikipedia.org/wiki/POSIX refer to: https://en.wikipedia.org/wiki/Unix_file_type ...

  7. 【Linux】【Services】【KVM】安装与简单配置

    1. 环境: 1.1. OS: Red Hat Enterprise Linux Server release 7.4 (Maipo) 1.2. Kernel: 3.10.0-693.el7.x86_ ...

  8. javascript将平行的拥有上下级关系的数据转换成树形结构

    转换函数 var Littlehow = {}; /** * littlehow 2019-05-15 * 平行数据树形转换器 * @type {{format: tree.format, sort: ...

  9. Spring Batch Event Listeners

    Learn to create and configure Spring batch's JobExecutionListener (before and after job), StepExecut ...

  10. JSP 文字乱码、${}引用无效

    问题: 代码:<form action="/test/requestPost.do" method="post"> <input type=& ...