spark ml pipeline构建机器学习任务
一、关于spark ml pipeline与机器学习
一个典型的机器学习构建包含若干个过程
1、源数据ETL
2、数据预处理
3、特征选取
4、模型训练与验证
以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果。因此,对以上多个步骤、进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效、易用。
受 scikit-learn 项目的启发,并且总结了MLlib在处理复杂机器学习问题的弊端(主要为工作繁杂,流程不清晰),旨在向用户提供基于DataFrame 之上的更加高层次的 API 库,以更加方便的构建复杂的机器学习工作流式应用。一个pipeline 在结构上会包含一个或多个Stage,每一个 Stage 都会完成一个任务,如数据集处理转化,模型训练,参数设置或数据预测等,这样的Stage 在 ML 里按照处理问题类型的不同都有相应的定义和实现。两个主要的stage为Transformer和Estimator。Transformer主要是用来操作一个DataFrame 数据并生成另外一个DataFrame 数据,比如svm模型、一个特征提取工具,都可以抽象为一个Transformer。Estimator 则主要是用来做模型拟合用的,用来生成一个Transformer。可能这样说比较难以理解,下面就以一个完整的机器学习案例来说明spark ml pipeline是怎么构建机器学习工作流的。
二、使用spark ml pipeline构建机器学习工作流
在此以Kaggle数据竞赛Display Advertising Challenge的数据集(该数据集为利用用户特征进行广告点击预测)开始,利用spark ml pipeline构建一个完整的机器学习工作流程。
Display Advertising Challenge的这份数据本身就不多做介绍了,主要包括3部分,numerical型特征集、Categorical类型特征集、类标签。
首先,读入样本集,并将样本集划分为训练集与测试集:
//使用file标记文件路径,允许spark读取本地文件
String fileReadPath = "file:\\D:\\dac_sample\\dac_sample.txt";
//使用textFile读入数据
SparkContext sc = Contexts.sparkContext;
RDD<String> file = sc.textFile(fileReadPath,);
JavaRDD<String> sparkContent = file.toJavaRDD();
JavaRDD<Row> sampleRow = sparkContent.map(new Function<String, Row>() {
public Row call(String string) {
String tempStr = string.replace("\t",",");
String[] features = tempStr.split(",");
int intLable= Integer.parseInt(features[]);
String intFeature1 = features[];
String intFeature2 = features[];
String CatFeature1 = features[];
String CatFeature2 = features[];
return RowFactory.create(intLable, intFeature1, intFeature2, CatFeature1, CatFeature2);
}
}); double[] weights = {0.8, 0.2};
Long seed = 42L;
JavaRDD<Row>[] sampleRows = sampleRow.randomSplit(weights,seed);
得到样本集后,构建出 DataFrame格式的数据供spark ml pipeline使用:
List<StructField> fields = new ArrayList<StructField>();
fields.add(DataTypes.createStructField("lable", DataTypes.IntegerType, false));
fields.add(DataTypes.createStructField("intFeature1", DataTypes.StringType, true));
fields.add(DataTypes.createStructField("intFeature2", DataTypes.StringType, true));
fields.add(DataTypes.createStructField("CatFeature1", DataTypes.StringType, true));
fields.add(DataTypes.createStructField("CatFeature2", DataTypes.StringType, true));
//and so on StructType schema = DataTypes.createStructType(fields);
DataFrame dfTrain = Contexts.hiveContext.createDataFrame(sampleRows[], schema);//训练数据
dfTrain.registerTempTable("tmpTable1");
DataFrame dfTest = Contexts.hiveContext.createDataFrame(sampleRows[], schema);//测试数据
dfTest.registerTempTable("tmpTable2");
由于在dfTrain、dfTest中所有的特征目前都为string类型,而机器学习则要求其特征为numerical类型,在此需要对特征做转换,包括类型转换和缺失值的处理。
首先,将intFeature由string转为double,cast()方法将表中指定列string类型转换为double类型,并生成新列并命名为intFeature1Temp,
之后,需要删除原来的数据列 并将新列重命名为intFeature1,这样,就将string类型的特征转换得到double类型的特征了。
//Cast integer features from String to Double
dfTest = dfTest.withColumn("intFeature1Temp",dfTest.col("intFeature1").cast("double"));
dfTest = dfTest.drop("intFeature1").withColumnRenamed("intFeature1Temp","intFeature1");
如果intFeature特征是年龄或者特征等类型,则需要进行分箱操作,将一个特征按照指定范围进行划分:
/*特征转换,部分特征需要进行分箱,比如年龄,进行分段成成年未成年等 */
double[] splitV = {0.0,16.0,Double.MAX_VALUE};
Bucketizer bucketizer = new Bucketizer().setInputCol("").setOutputCol("").setSplits(splitV);
再次,需要将categorical 类型的特征转换为numerical类型。主要包括两个步骤,缺失值处理和编码转换。
缺失值处理方面,可以使用全局的NA来统一标记缺失值:
/*将categoricalb类型的变量的缺失值使用NA值填充*/
String[] strCols = {"CatFeature1","CatFeature2"};
dfTrain = dfTrain.na().fill("NA",strCols);
dfTest = dfTest.na().fill("NA",strCols);
缺失值处理完成之后,就可以正式的对categorical类型的特征进行numerical转换了。在spark ml中,可以借助StringIndexer和oneHotEncoder完成
这一任务:
// StringIndexer oneHotEncoder 将 categorical变量转换为 numerical 变量
// 如某列特征为星期几、天气等等特征,则转换为七个0-1特征
StringIndexer cat1Index = new StringIndexer().setInputCol("CatFeature1").setOutputCol("indexedCat1").setHandleInvalid("skip");
OneHotEncoder cat1Encoder = new OneHotEncoder().setInputCol(cat1Index.getOutputCol()).setOutputCol("CatVector1");
StringIndexer cat2Index = new StringIndexer().setInputCol("CatFeature2").setOutputCol("indexedCat2");
OneHotEncoder cat2Encoder = new OneHotEncoder().setInputCol(cat2Index.getOutputCol()).setOutputCol("CatVector2");
至此,特征预处理步骤基本完成了。由于上述特征都是处于单独的列并且列名独立,为方便后续模型进行特征输入,需要将其转换为特征向量,并统一命名,
可以使用VectorAssembler类完成这一任务:
/*转换为特征向量*/
String[] vectorAsCols = {"intFeature1","intFeature2","CatVector1","CatVector2"};
VectorAssembler vectorAssembler = new VectorAssembler().setInputCols(vectorAsCols).setOutputCol("vectorFeature");
通常,预处理之后获得的特征有成千上万维,出于去除冗余特征、消除维数灾难、提高模型质量的考虑,需要进行选择。在此,使用卡方检验方法,
利用特征与类标签之间的相关性,进行特征选取:
/*特征较多时,使用卡方检验进行特征选择,主要是考察特征与类标签的相关性*/
ChiSqSelector chiSqSelector = new ChiSqSelector().setFeaturesCol("vectorFeature").setLabelCol("label").setNumTopFeatures()
.setOutputCol("selectedFeature");
在特征预处理和特征选取完成之后,就可以定义模型及其参数了。简单期间,在此使用LogisticRegression模型,并设定最大迭代次数、正则化项:
/* 设置最大迭代次数和正则化参数 setElasticNetParam=0.0 为L2正则化 setElasticNetParam=1.0为L1正则化*/
/*设置特征向量的列名,标签的列名*/
LogisticRegression logModel = new LogisticRegression().setMaxIter().setRegParam(0.1).setElasticNetParam(0.0)
.setFeaturesCol("selectedFeature").setLabelCol("lable");
在上述准备步骤完成之后,就可以开始定义pipeline并进行模型的学习了:
/*将特征转换,特征聚合,模型等组成一个管道,并调用它的fit方法拟合出模型*/
PipelineStage[] pipelineStage = {cat1Index,cat2Index,cat1Encoder,cat2Encoder,vectorAssembler,logModel};
Pipeline pipline = new Pipeline().setStages(pipelineStage);
PipelineModel pModle = pipline.fit(dfTrain);
上面pipeline的fit方法得到的是一个Transformer,我们可以使它作用于测试集得到模型在测试集上的预测结果:
//拟合得到模型的transform方法进行预测
DataFrame output = pModle.transform(dfTest).select("selectedFeature", "label", "prediction", "rawPrediction", "probability");
DataFrame prediction = output.select("label", "prediction");
prediction.show();
分析计算,得到模型在训练集上的准确率,看看模型的效果怎么样:
/*测试集合上的准确率*/
long correct = prediction.filter(prediction.col("label").equalTo(prediction.col("'prediction"))).count();
long total = prediction.count();
double accuracy = correct / (double)total; System.out.println(accuracy);
最后,可以将模型保存下来,下次直接使用就可以了:
String pModlePath = ""file:\\D:\\dac_sample\\";
pModle.save(pModlePath);
三,梳理和总结:
上述,借助代码实现了基于spark ml pipeline的机器学习,包括数据转换、特征生成、特征选取、模型定义及模型学习等多个stage,得到的pipeline
模型后,就可以在新的数据集上进行预测,总结为两部分并用流程图表示如下:
训练阶段:
预测阶段:
借助于Pepeline,在spark上进行机器学习的数据流向更加清晰,同时每一stage的任务也更加明了,因此,无论是在模型的预测使用上、还是
模型后续的改进优化上,都变得更加容易。
spark ml pipeline构建机器学习任务的更多相关文章
- 使用spark ml pipeline进行机器学习
一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的 ...
- 使用 ML Pipeline 构建机器学习工作流
http://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice5/
- Spark ML Pipeline简介
Spark ML Pipeline基于DataFrame构建了一套High-level API,我们可以使用MLPipeline构建机器学习应用,它能够将一个机器学习应用的多个处理过程组织起来,通过在 ...
- spark ML pipeline 学习
一.pipeline 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与 ...
- spark ml 的例子
一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的 ...
- Spark ML机器学习库评估指标示例
本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.eval ...
- 基于Spark ML的Titanic Challenge (Top 6%)
下面代码按照之前参加Kaggle的python代码改写,只完成了模型的训练过程,还需要对test集的数据进行转换和对test集进行预测. scala 2.11.12 spark 2.2.2 packa ...
- Spark ML源码分析之二 从单机到分布式
前一节从宏观角度给大家介绍了Spark ML的设计框架(链接:http://www.cnblogs.com/jicanghai/p/8570805.html),本节我们将介绍,Spar ...
- Spark.ML之PipeLine学习笔记
地址: http://spark.apache.org/docs/2.0.0/ml-pipeline.html Spark PipeLine 是基于DataFrames的高层的API,可以方便用户 ...
随机推荐
- 云计算/云存储---Ceph和Openstack的cinder模块对接方法
1.创建存储池 在ceph节点中执行如下语句. #ceph osd pool create volumes 2.配置 OPENSTACK 的 CEPH 客户端 在ceph节点两次执行如下语句,两次{y ...
- 剑指Offer(三十六):两个链表的第一个公共结点
剑指Offer(三十六):两个链表的第一个公共结点 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.ne ...
- 小程序基础能力~自定义 tabBar
自定义 tabBar 基础库 2.5.0 开始支持,低版本需做兼容处理. 自定义 tabBar 可以让开发者更加灵活地设置 tabBar 样式,以满足更多个性化的场景. 在自定义 tabBar 模式下 ...
- arcgis api for js 出现跨域问题
最近几天在开始入手 arcgis api for js .那就先写些Demo练练手. 选择百度地图.这里用的是拼地图 url 的方式来加载百度地图. 加载百度地图参考的是:ArcGIS API for ...
- vbs查找Excel中的Sheet2工作表是否存在不存在新建
set oExcel = CreateObject( "Excel.Application" ) oExcel.Visible = false '4) 打开已存在的工作簿: oEx ...
- 【Java】《Java程序设计基础教程》第五章学习
5.1 抽象类 Java语言中,父类的某些方法不包括任何逻辑,并且需要由子类重写.在这种情况下,用abstract关键字来修饰一个类时,这个类叫做抽象类,用abstract关键字来修饰一个方法时,这个 ...
- webpack打包后服务端__dirname失效问题
在webpack.config.js中添加如下配置: target: 'node', node: { __dirname: false, __filename: false, } 详见:https:/ ...
- dedecms列表页使用noflag
最近小编使用dedecms遇到列表页需要使用noflag,在网上找了一圈都是直接替换代码,试用了一下并不能解决问题. 以下是小编自己根据资料整理的...多说一句由于各个编辑器打开的方式可能代码不在这一 ...
- grpc提供http服务
package main import ( "google.golang.org/grpc" "google.golang.org/grpc/credentials&qu ...
- ps -p {pid} -o etime获取进程运行时间是如何计算出来的?
ps -p 986 -o etime可以获取进程986的执行时间,不论系统时间有没有发生改变,它都可以返回正确的结果: -bash-4.2$ ps -p 986 -o etime ELAPSED 13 ...