算法复习——无源汇可行流(zoj2314)
题目:
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.
The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.
Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:
fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i
Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.
Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.
This problem contains multiple test cases!
The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.
The output format consists of N output blocks. There is a blank line between output blocks.
Input
The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.
Output
On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.
Sample Input
2
4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2
4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3
Sample Input
NO
YES
1
2
3
2
1
1
题解:
先说说无源汇可行流的解法:
计算每个顶点的r和c,其中r表示进入该点的边的下界值之和,c表示从该点出发的边的下界值之和
若r>c,则将该点与src(源点)连一条下界为0,上界为r-c的边
若r<c,则将该点与des(汇点)连一条下界为0,上界为c-r的边
然后原来的边怎么连就怎么连,但下界改为0,上界为这条边的原来的上界减去原来的下界
然后跑最大流,若从src出发的边都跑满则有界,否则无解
边的实际流量就是这条边原来的下界加上此时边的流量
该题为无源汇可行流的模板题
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N=;
const int M=;
int T,n,m,des,src,tr[N],tc[N],id[M];
int tot=,first[N],lev[N],go[M],next[M],rest[M],cur[M],cnt=,ans=;
struct node
{
int from,go,minn,maxx;
}edge[M];
inline void comb(int a,int b,int c)
{
next[tot]=first[a],first[a]=tot,go[tot]=b,rest[tot]=c;
next[++tot]=first[b],first[b]=tot,go[tot]=a,rest[tot]=;
}
inline void comb2(int a,int b,int c)
{
next[++tot]=first[a],first[a]=tot,go[tot]=b,rest[tot]=c;
next[++tot]=first[b],first[b]=tot,go[tot]=a,rest[tot]=;
}
inline bool bfs()
{
for(int i=src;i<=des;i++) cur[i]=first[i],lev[i]=-;
static int que[N],tail,u,v;
que[tail=]=src;
lev[src]=;
for(int head=;head<=tail;head++)
{
u=que[head];
for(int e=first[u];e;e=next[e])
{
if(lev[v=go[e]]==-&&rest[e])
{
lev[v]=lev[u]+;
que[++tail]=v;
if(v==des) return true;
}
}
}
return false;
}
inline int dinic(int u,int flow)
{
if(u==des)
return flow;
int res=,delta,v;
for(int &e=cur[u];e;e=next[e])
{
if(lev[v=go[e]]>lev[u]&&rest[e])
{
delta=dinic(v,min(flow-res,rest[e]));
if(delta)
{
rest[e]-=delta;
rest[e^]+=delta;
res+=delta;
if(res==flow) break;
}
}
}
if(flow!=res) lev[u]=-;
return res;
}
inline void maxflow()
{
while(bfs())
ans+=dinic(src,1e+);
}
int main()
{
//freopen("a.in","r",stdin);
scanf("%d",&T);
while(T--)
{
scanf("\n");
memset(tr,,sizeof(tr));
memset(tc,,sizeof(tc));
memset(first,,sizeof(first));
scanf("%d%d",&n,&m);
src=,des=n+,tot=,cnt=,ans=;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&edge[i].from,&edge[i].go,&edge[i].minn,&edge[i].maxx);
tr[edge[i].go]+=edge[i].minn;
tc[edge[i].from]+=edge[i].minn;
id[i]=++tot;
comb(edge[i].from,edge[i].go,edge[i].maxx-edge[i].minn);
}
for(int i=;i<=n;i++)
{
if(tr[i]>tc[i])
{
comb2(src,i,tr[i]-tc[i]);
cnt+=(tr[i]-tc[i]);
}
if(tr[i]<tc[i])
comb2(i,des,tc[i]-tr[i]);
}
maxflow();
if(ans!=cnt) cout<<"NO"<<endl;
else
{
cout<<"YES"<<endl;
for(int i=;i<=m;i++)
cout<<(rest[id[i]^]+edge[i].minn)<<endl;
}
}
}
算法复习——无源汇可行流(zoj2314)的更多相关文章
- ZOJ 1314 Reactor Cooling | 上下界无源汇可行流
ZOJ 1314 Reactor Cooling | 上下界无源汇可行流 题意 有一个网络,每条边有流量的上界和下界,求一种方案,让里面的流可以循环往复地流动起来. 题解 上下界无源汇可行流的模型: ...
- ZOJ 2314 Reactor Cooling | 无源汇可行流
题目: 无源汇可行流例题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题解: 证明什么的就算了,下面给出一种建图方式 ...
- ZOJ 2314 无源汇可行流(输出方案)
Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge The terrorist group leaded by a ...
- sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...
- SGU 194 无源无汇可行流求解
题意:n个点,m条边,每条边有容量限制 l--c,每个点满足容量平衡(流入等于流出),求可行解 无源无汇可行流问题,建立以一个超级源点和超级汇点,由于原来最大流问题时候,流量下界其实为0, 所以要转化 ...
- 算法复习——有源汇上下界可行流(bzoj2396)
题目: Description We are supposed to make a budget proposal for this multi-site competition. The budge ...
- ZOJ 3229 Shoot the Bullet | 有源汇可行流
题目: 射命丸文要给幻想乡的居民照相,共照n天m个人,每天射命丸文照相数不多于d个,且一个人n天一共被拍的照片不能少于g个,且每天可照的人有限制,且这些人今天照的相片必须在[l,r]以内,求是否有可行 ...
- BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)
题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...
- 【zoj2314】Reactor Cooling 有上下界可行流
题目描述 The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuc ...
随机推荐
- 分布式定时任务的redis锁实现
一个web项目如果部署为分布式时,平时常见的定时服务在一定的间隔时间内,可能出现多次重复调用的问题.而此时由于是不同容器之间的竞争,因此需要容器级别的锁 Redis为单进程单线程模式,采用队列模式将并 ...
- 开源项目: circular-progress-button
带进度条显示的按钮, 其效果如下所示: 其由三部分动画组成: 初始状态->圆环状态->完成状态. 0. 实现从初始到圆环的简单实现: 继承自button 类, 设置其背景 public c ...
- druid 配置WebStatFilter 网络统计以及监控
WebStatFilter用于采集web-jdbc关联监控的数据. web.xml配置 <filter> <filter-name>DruidWebStatFilter< ...
- Encryption-基础:MD5加密
环境:vc2003 .h /* MD5.H - header file for MD5C.C */ /* Copyright (C) 1991-2, RSA Data Security, Inc. C ...
- C++值传递、引用传递和指针传递
#include<iostream> using namespace std; //值传递 void change1(int n){ cout<<"值传递--函数操作 ...
- java在线聊天项目 使用SWT快速制作登录窗口,可视化窗口Design 更换窗口默认皮肤(切换Swing自带的几种皮肤如矩形带圆角)
SWT成功激活后 new一个JDialog 调整到Design视图 默认的视图模式是BorderLayout,无论你怎么拖拽,只能放到东西南北中的位置上 所以,我们把视图模式调整为AbsoluteLa ...
- iOS开发遇到的坑之一: 开发遇见如下错误:Undefined symbols for architecture arm64
博客处女作,写得不好望谅解! “for architecture arm64”就是说没有支持arm64,在Build settings里architecture相关的几项需要配置正确 在最近升级coc ...
- 总结 Swift 中随机数的使用
在我们开发的过程中,时不时地需要产生一些随机数.这里我们总结一下Swift中常用的一些随机数生成函数.这里我们将在Playground中来做些示例演示. 整型随机数 如果我们想要一个整型的随机数,则可 ...
- div section article区分--20150227
div section article ,语义是从无到有,逐渐增强的.div 无任何语义,仅仅用作样式化或者脚本化的钩子(hook),对于一段主题性的内容,则就适用 section,而假如这段内容可以 ...
- VUE +element el-table运用sortable 拖拽table排序,实现行排序,列排序
Sortable.js是一款轻量级的拖放排序列表的js插件(虽然体积小,但是功能很强大) 项目需求是要求能对element中 的table进行拖拽行排序 这里用到了sorttable Sortable ...