算法复习——无源汇可行流(zoj2314)
题目:
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.
The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.
Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:
fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i
Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.
Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.
This problem contains multiple test cases!
The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.
The output format consists of N output blocks. There is a blank line between output blocks.
Input
The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.
Output
On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.
Sample Input
2
4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2
4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3
Sample Input
NO
YES
1
2
3
2
1
1
题解:
先说说无源汇可行流的解法:
计算每个顶点的r和c,其中r表示进入该点的边的下界值之和,c表示从该点出发的边的下界值之和
若r>c,则将该点与src(源点)连一条下界为0,上界为r-c的边
若r<c,则将该点与des(汇点)连一条下界为0,上界为c-r的边
然后原来的边怎么连就怎么连,但下界改为0,上界为这条边的原来的上界减去原来的下界
然后跑最大流,若从src出发的边都跑满则有界,否则无解
边的实际流量就是这条边原来的下界加上此时边的流量
该题为无源汇可行流的模板题
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N=;
const int M=;
int T,n,m,des,src,tr[N],tc[N],id[M];
int tot=,first[N],lev[N],go[M],next[M],rest[M],cur[M],cnt=,ans=;
struct node
{
int from,go,minn,maxx;
}edge[M];
inline void comb(int a,int b,int c)
{
next[tot]=first[a],first[a]=tot,go[tot]=b,rest[tot]=c;
next[++tot]=first[b],first[b]=tot,go[tot]=a,rest[tot]=;
}
inline void comb2(int a,int b,int c)
{
next[++tot]=first[a],first[a]=tot,go[tot]=b,rest[tot]=c;
next[++tot]=first[b],first[b]=tot,go[tot]=a,rest[tot]=;
}
inline bool bfs()
{
for(int i=src;i<=des;i++) cur[i]=first[i],lev[i]=-;
static int que[N],tail,u,v;
que[tail=]=src;
lev[src]=;
for(int head=;head<=tail;head++)
{
u=que[head];
for(int e=first[u];e;e=next[e])
{
if(lev[v=go[e]]==-&&rest[e])
{
lev[v]=lev[u]+;
que[++tail]=v;
if(v==des) return true;
}
}
}
return false;
}
inline int dinic(int u,int flow)
{
if(u==des)
return flow;
int res=,delta,v;
for(int &e=cur[u];e;e=next[e])
{
if(lev[v=go[e]]>lev[u]&&rest[e])
{
delta=dinic(v,min(flow-res,rest[e]));
if(delta)
{
rest[e]-=delta;
rest[e^]+=delta;
res+=delta;
if(res==flow) break;
}
}
}
if(flow!=res) lev[u]=-;
return res;
}
inline void maxflow()
{
while(bfs())
ans+=dinic(src,1e+);
}
int main()
{
//freopen("a.in","r",stdin);
scanf("%d",&T);
while(T--)
{
scanf("\n");
memset(tr,,sizeof(tr));
memset(tc,,sizeof(tc));
memset(first,,sizeof(first));
scanf("%d%d",&n,&m);
src=,des=n+,tot=,cnt=,ans=;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&edge[i].from,&edge[i].go,&edge[i].minn,&edge[i].maxx);
tr[edge[i].go]+=edge[i].minn;
tc[edge[i].from]+=edge[i].minn;
id[i]=++tot;
comb(edge[i].from,edge[i].go,edge[i].maxx-edge[i].minn);
}
for(int i=;i<=n;i++)
{
if(tr[i]>tc[i])
{
comb2(src,i,tr[i]-tc[i]);
cnt+=(tr[i]-tc[i]);
}
if(tr[i]<tc[i])
comb2(i,des,tc[i]-tr[i]);
}
maxflow();
if(ans!=cnt) cout<<"NO"<<endl;
else
{
cout<<"YES"<<endl;
for(int i=;i<=m;i++)
cout<<(rest[id[i]^]+edge[i].minn)<<endl;
}
}
}
算法复习——无源汇可行流(zoj2314)的更多相关文章
- ZOJ 1314 Reactor Cooling | 上下界无源汇可行流
ZOJ 1314 Reactor Cooling | 上下界无源汇可行流 题意 有一个网络,每条边有流量的上界和下界,求一种方案,让里面的流可以循环往复地流动起来. 题解 上下界无源汇可行流的模型: ...
- ZOJ 2314 Reactor Cooling | 无源汇可行流
题目: 无源汇可行流例题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题解: 证明什么的就算了,下面给出一种建图方式 ...
- ZOJ 2314 无源汇可行流(输出方案)
Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge The terrorist group leaded by a ...
- sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...
- SGU 194 无源无汇可行流求解
题意:n个点,m条边,每条边有容量限制 l--c,每个点满足容量平衡(流入等于流出),求可行解 无源无汇可行流问题,建立以一个超级源点和超级汇点,由于原来最大流问题时候,流量下界其实为0, 所以要转化 ...
- 算法复习——有源汇上下界可行流(bzoj2396)
题目: Description We are supposed to make a budget proposal for this multi-site competition. The budge ...
- ZOJ 3229 Shoot the Bullet | 有源汇可行流
题目: 射命丸文要给幻想乡的居民照相,共照n天m个人,每天射命丸文照相数不多于d个,且一个人n天一共被拍的照片不能少于g个,且每天可照的人有限制,且这些人今天照的相片必须在[l,r]以内,求是否有可行 ...
- BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)
题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...
- 【zoj2314】Reactor Cooling 有上下界可行流
题目描述 The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuc ...
随机推荐
- 浅谈table和DIV网页布局
DIV+CSS是网站标准(或称“WEB标准”)中常用的术语之一,通常为了说明与HTML网页设计语言中的表格(table)定位方式的区别,因为XHTML网站设计标准中,不再使用表格定位技术,而是采用DI ...
- 将从SQL2008 r2里备份的数据库还原到SQL2008中
从标题可以看出这是未解决上一篇遗留问题写的,现在我也不知道这个可不可以成功,方法似乎查到了一种,具体怎样还不清楚:而且,我想说的是“我踩雷了”. 这篇的主角是“Database Publishing ...
- 删除.cpp文件
今天启动vc6.0后随手直接建了一个.cpp文件(没有建什么工程的),编译运行成功后,就把vc关了.后想把这个随手建的文件给删掉,却怎么也找不到这个文件,文件搜索或改变文件的属性也无法找到这个文件,即 ...
- npm install -g cnpm --registry=https://registry.npm.taobao.org
npm install -g cnpm --registry=https://registry.npm.taobao.org
- 什么是Java Marker Interface(标记接口)
先看看什么是标记接口?标记接口有时也叫标签接口(Tag interface),即接口不包含任何方法.在Java里很容易找到标记接口的例子,比如JDK里的Serializable接口就是一个标记接口. ...
- Servlet Context
Servlet Context Container Provider 负责提供ServletContext的实现. A ServletContext is rooted at a known path ...
- 使用js将后台返回的数据转换成树形结构
将类似如下数据转换成树形的数据: [ { id: 1, name: '1', }, { id: 2, name: '1-1', parentId: 1 }, { id: 3, name: '1-1-1 ...
- c++ 各种类型字符串转换
typedef std::string u8string; u8string To_UTF8(const std::u16string &s) { std::wstring_convert&l ...
- [BZOJ2938]病毒 (AC自动机+dfs)
题目描述 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码段,试问,是否 ...
- 开发工具IDEA环境安装配置
开发工具IDEA环境安装配置 该工具和eclipse类似,但是使用感受确实比eclipse好,越来越多人开始使用IDEA了. 下载地址如下 : https://www.jetbrains.com/id ...