题目:

The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.

The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.

Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:

fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.

Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input

The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.

Output

On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.

Sample Input

2

4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2

4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3

Sample Input

NO

YES
1
2
3
2
1
1

题解:

先说说无源汇可行流的解法:

计算每个顶点的r和c,其中r表示进入该点的边的下界值之和,c表示从该点出发的边的下界值之和

若r>c,则将该点与src(源点)连一条下界为0,上界为r-c的边

若r<c,则将该点与des(汇点)连一条下界为0,上界为c-r的边

然后原来的边怎么连就怎么连,但下界改为0,上界为这条边的原来的上界减去原来的下界

然后跑最大流,若从src出发的边都跑满则有界,否则无解

边的实际流量就是这条边原来的下界加上此时边的流量

该题为无源汇可行流的模板题

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N=;
const int M=;
int T,n,m,des,src,tr[N],tc[N],id[M];
int tot=,first[N],lev[N],go[M],next[M],rest[M],cur[M],cnt=,ans=;
struct node
{
int from,go,minn,maxx;
}edge[M];
inline void comb(int a,int b,int c)
{
next[tot]=first[a],first[a]=tot,go[tot]=b,rest[tot]=c;
next[++tot]=first[b],first[b]=tot,go[tot]=a,rest[tot]=;
}
inline void comb2(int a,int b,int c)
{
next[++tot]=first[a],first[a]=tot,go[tot]=b,rest[tot]=c;
next[++tot]=first[b],first[b]=tot,go[tot]=a,rest[tot]=;
}
inline bool bfs()
{
for(int i=src;i<=des;i++) cur[i]=first[i],lev[i]=-;
static int que[N],tail,u,v;
que[tail=]=src;
lev[src]=;
for(int head=;head<=tail;head++)
{
u=que[head];
for(int e=first[u];e;e=next[e])
{
if(lev[v=go[e]]==-&&rest[e])
{
lev[v]=lev[u]+;
que[++tail]=v;
if(v==des) return true;
}
}
}
return false;
}
inline int dinic(int u,int flow)
{
if(u==des)
return flow;
int res=,delta,v;
for(int &e=cur[u];e;e=next[e])
{
if(lev[v=go[e]]>lev[u]&&rest[e])
{
delta=dinic(v,min(flow-res,rest[e]));
if(delta)
{
rest[e]-=delta;
rest[e^]+=delta;
res+=delta;
if(res==flow) break;
}
}
}
if(flow!=res) lev[u]=-;
return res;
}
inline void maxflow()
{
while(bfs())
ans+=dinic(src,1e+);
}
int main()
{
//freopen("a.in","r",stdin);
scanf("%d",&T);
while(T--)
{
scanf("\n");
memset(tr,,sizeof(tr));
memset(tc,,sizeof(tc));
memset(first,,sizeof(first));
scanf("%d%d",&n,&m);
src=,des=n+,tot=,cnt=,ans=;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&edge[i].from,&edge[i].go,&edge[i].minn,&edge[i].maxx);
tr[edge[i].go]+=edge[i].minn;
tc[edge[i].from]+=edge[i].minn;
id[i]=++tot;
comb(edge[i].from,edge[i].go,edge[i].maxx-edge[i].minn);
}
for(int i=;i<=n;i++)
{
if(tr[i]>tc[i])
{
comb2(src,i,tr[i]-tc[i]);
cnt+=(tr[i]-tc[i]);
}
if(tr[i]<tc[i])
comb2(i,des,tc[i]-tr[i]);
}
maxflow();
if(ans!=cnt) cout<<"NO"<<endl;
else
{
cout<<"YES"<<endl;
for(int i=;i<=m;i++)
cout<<(rest[id[i]^]+edge[i].minn)<<endl;
}
}
}

算法复习——无源汇可行流(zoj2314)的更多相关文章

  1. ZOJ 1314 Reactor Cooling | 上下界无源汇可行流

    ZOJ 1314 Reactor Cooling | 上下界无源汇可行流 题意 有一个网络,每条边有流量的上界和下界,求一种方案,让里面的流可以循环往复地流动起来. 题解 上下界无源汇可行流的模型: ...

  2. ZOJ 2314 Reactor Cooling | 无源汇可行流

    题目: 无源汇可行流例题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题解: 证明什么的就算了,下面给出一种建图方式 ...

  3. ZOJ 2314 无源汇可行流(输出方案)

    Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge The terrorist group leaded by a ...

  4. sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...

  5. SGU 194 无源无汇可行流求解

    题意:n个点,m条边,每条边有容量限制 l--c,每个点满足容量平衡(流入等于流出),求可行解 无源无汇可行流问题,建立以一个超级源点和超级汇点,由于原来最大流问题时候,流量下界其实为0, 所以要转化 ...

  6. 算法复习——有源汇上下界可行流(bzoj2396)

    题目: Description We are supposed to make a budget proposal for this multi-site competition. The budge ...

  7. ZOJ 3229 Shoot the Bullet | 有源汇可行流

    题目: 射命丸文要给幻想乡的居民照相,共照n天m个人,每天射命丸文照相数不多于d个,且一个人n天一共被拍的照片不能少于g个,且每天可照的人有限制,且这些人今天照的相片必须在[l,r]以内,求是否有可行 ...

  8. BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)

    题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...

  9. 【zoj2314】Reactor Cooling 有上下界可行流

    题目描述 The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuc ...

随机推荐

  1. 查询sqlserver数据库,表占用数据大小

     if exists(select 1 from tempdb..sysobjects where id=object_id('tempdb..#tabName') and xtype='u')dro ...

  2. SQL还原数据库

    还原一个备份数据库的经历. 首先,手头上有工程文件及相应的数据库的备份. 步骤: 1.在工程文件里找到配置文件,我这个是在bin目录里找到config.ini 2.双击打开它,里面有一些数据库的相关信 ...

  3. js 双向绑定

    //双向绑定实例 <input name="" ng-bind-123="name" /> function DataBinder( object_ ...

  4. 迅为iMX6Q/PLUS开发板烧写设备树内核 Qt 系统

    迅为iMX6Q 和 iMX6PLUS 两个硬件版本,设备树镜像的烧写方法以及镜像所在目录,镜像名称全部一致. 如果用的是 iMX6Q 版本,想要烧写设备树版本镜像,请使用 iMX6Q 设备树版本的光盘 ...

  5. crontab 应用

    可以用crontab -e 添加要执行的命令. 命令执行的结果,无论是标准输出还是错误输出,都将以邮件形式发给用户.            添加的命令必须以如下格式:    * * * * * /co ...

  6. 解决因为手机设置字体大小导致h5页面在webview中变形的BUG

    首先,我们做了一个H5页面,在各种手机浏览器中打开都没问题.我们采用了rem单位进行布局,通过JS来动态计算网页的视窗宽度,动态设置html的font-size,一切都比较完美. 这时候,你自信满满的 ...

  7. 引入了junit为什么还是用不了@Test注解

    pom文件明明引入了unit,为什么还是用不了@Test? 配置如下: <dependency> <groupId>junit</groupId> <arti ...

  8. off-by-one&doublefree. 看雪10月ctf2017 TSRC 第四题赛后学习

    off-by-one 0x00 发现漏洞 1.off-by-one 在massage函数中,如图所示,可以修改的字节数比原内存大小多了一个字节 2.悬挂指针 可以看到,在free堆块的时候,没有清空指 ...

  9. C# 队列Queue

    using System; using System.Collections.Generic; using System.Linq; namespace Queue测试 { class Program ...

  10. RedHat7搭建KVM虚拟机

    RedHat7搭建KVM虚拟机 1. 宿主机安装RedHat7.3系统 1.1选择语言 中文.简体中文(中国) 1.2安装位置 1.2.1自定义分区,选择LVM,将分区空间全部分配给根 1.2.2禁用 ...