[洛谷P2408]不同子串个数
题目大意:给你一个字符串,求其中本质不同的字串的个数
题解:同[洛谷P4070][SDOI2016]生成魔咒,只要最后再输出就行了
卡点:无
C++ Code:
#include <cstdio>
#include <map>
#define maxn 100010
long long ans;
namespace SAM {
#define N (maxn << 1)
#define root 1
int R[N], fail[N];
int nxt[N][26];
int lst = root, idx = root;
void append(char __ch) {
int ch = __ch - 'a';
int p = lst, np = lst = ++idx;
R[np] = R[p] + 1;
for (; p && !nxt[p][ch]; p = fail[p]) nxt[p][ch] = np;
if (!p) fail[np] = root;
else {
int q = nxt[p][ch];
if (R[p] + 1 == R[q]) fail[np] = q;
else {
int nq = ++idx;
std::copy(nxt[q], nxt[q] + 26, nxt[nq]);
fail[nq] = fail[q], R[nq] = R[p] + 1, fail[np] = fail[q] = nq;
for (; p && nxt[p][ch] && nxt[p][ch] == q; p = fail[p]) nxt[p][ch] = nq;
}
}
}
int query() {
return R[lst] - R[fail[lst]];
}
#undef root
#undef N
} #define maxn 100010
int n;
char s[maxn];
int main() {
scanf("%d%s", &n, s);
for (int i = 0; i < n; i++) {
SAM::append(s[i]);
ans += SAM::query();
}
printf("%lld\n", ans);
return 0;
}
[洛谷P2408]不同子串个数的更多相关文章
- 洛谷P2408 不同子串个数 后缀数组 + Height数组
## 题目描述: 给你一个长为 $N$ $(N<=10^5)$ 的字符串,求不同的子串的个数我们定义两个子串不同,当且仅当有这两个子串长度不一样 或者长度一样且有任意一位不一样.子串的定义:原字 ...
- 【文文殿下】洛谷P2408 不同子串个数
题目链接https://www.luogu.org/problemnew/show/P2408 SAM裸题,大力求就行了 #include<cstdio> #include<cstr ...
- Luogu P2408 不同子串个数【SAM】
P2408 不同子串个数 计算一个字符串的不同子串个数 两种方法,一种是\(dp\)出来\(SAM\)从起点开始的路径数量 另一种方法就是计算每个点的\(len[i]-len[link[i]]\)这个 ...
- 洛谷P2408 不同字串个数 [后缀数组]
题目传送门 不同字串个数 题目背景 因为NOI被虐傻了,蒟蒻的YJQ准备来学习一下字符串,于是它碰到了这样一道题: 题目描述 给你一个长为N的字符串,求不同的子串的个数 我们定义两个子串不同,当且仅当 ...
- 【题解】洛谷P2679 [NOIP2015TG] 子串(DP+滚动数组)
次元传送门:洛谷P2679 思路 蒟蒻一开始并没有思路而去看了题解 我们发现对于两个字串的位置 我们只需要管他们匹配成功或者匹配失败即可 f[i][j][k] 记录当前 a[i]不论等不等于b[j] ...
- LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...
- 【洛谷 P2408】 不同子串个数(后缀自动机)
题目链接 裸体就是身体. 建出\(SAM\),\(DAG\)上跑\(DP\),\(f[u]=1+\sum_{(u,v)\in DAG}f[v]\) 答案为\(f[1]-1\)(因为根节点没有字符) # ...
- 洛谷 P1026 统计单词个数 (分组+子串预处理)(分组型dp再次总结)
一看完这道题就知道是划分型dp 有两个点要注意 (1)怎么预处理子串. 表示以i为开头,结尾在j之前(含),有没有子串,有就1,没有就0 (2)dp的过程 这种分成k组最优的题目已经高度模板化了,我总 ...
- luogu P2408 不同子串个数
考虑反向操作,去计算有多少组相同的子串,对于一组大小为k的极大相同子串的集合,ans-=k-1. 为了避免重复计算,需要一种有效的,有顺序的记录方案. 比如说,对于每一个相同组,按其起始点所在的位置排 ...
随机推荐
- Omad群组部署、依赖部署一键解决
本文来自网易云社区 作者:李培斌 前言 基于omad部署平台实现一键部署的实践已有很多成功的经验,杭研QA的技术先锋们也在ks圈里有很多不同的文章去阐述关于这类需求的实现和思路,当然包括我们金融事业部 ...
- Ubuntu主题美化篇
主题美化篇 Ubuntu自带的主题简直不敢恭维,这里博主将它美化了一番,心情瞬间都好了一大截,码代码也会飞起!!先放一张我美化后的效果. 桌面和终端效果如下: unity-tweak-tool 调整 ...
- ubuntu networking 与 network-manager
刚遇到的坑,因为操作不当导致网络中断,于是手动配置了/etc/network/interfaces , 修复了系统之后发现ubuntu-desktop中的有线链接不见了,百度了一下说是networki ...
- 【zabbix 监控】第二章 安装测试被监控主机
客户端安装测试 一.准备两台被监控主机,分别做如下操作: web129:192.168.19.129 web130:192.168.19.130 [root@web129 ~]#yum -y inst ...
- 简析@Resource 和 @Autowired的区别
@Autowird @Autowird 属于spring框架,默认使用类型(byType)进行注入,例如下面代码: @Autowired public IUserService userService ...
- HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)
Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated accord ...
- 关于ES6-{块级作用域 let const 解构赋值 数组 字符串 函数的扩展 箭头函数}
关于ES6 块级作用域 任何一对花括号({})中的语句集都属于一个块,在块中声明的变量在代码块外都是不可访问的,称之为块级作用域,ES5以前没有块级作用域 let let 是ES6新增的声明变量的一种 ...
- 团队作业week9 情景测试
一.使用人群:学生.计算机工作者.对计算机感兴趣的人 1.学生:学生是学霸系统的主要用户.学生一般会通过网络寻找与自己的课程,作业有关的信息.首先,可以通过我们的搜索功能在我们的数据库中寻找我们从网络 ...
- 课堂练习之找数字0-N中“1”出现的次数
一.题目与要求 题目:给定一个十进制的正整数,写下从1开始,到N的所有整数,然后数一下其中出现“1”的个数. 要求:1.写一个函数 f(N) ,返回1 到 N 之间出现的“1”的个数.例如 f(12) ...
- Android UI 设计之 TextView EditText 组件属性方法最详细解析
. 作者 :万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/18964835 . TextView 相关类的继承结构 ...