Description

跳跳棋是在一条数轴上进行的。棋子只能摆在整点上。每个点不能摆超过一个棋子。我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置。我们要通过最少的跳动把他们的位置移动成x,y,z。(棋子是没有区别的)跳动的规则很简单,任意选一颗棋子,对一颗中轴棋子跳动。跳动后两颗棋子距离不变。一次只允许跳过1颗棋子。  写一个程序,首先判断是否可以完成任务。如果可以,输出最少需要的跳动次数。

Input

第一行包含三个整数,表示当前棋子的位置a b c。(互不相同)第二行包含三个整数,表示目标位置x y z。(互不相同)

Output

如果无解,输出一行NO。如果可以到达,第一行输出YES,第二行输出最少步数。

Sample Input

1 2 3
0 3 5

Sample Output

YES
2

【范围】
100% 绝对值不超过10^9

——————————————————————————————————
这道题我们发现如果从中间往两边跳的话 有两种状态 而从两边往中间跳的话只有一种状态
刚好非常符合树形状 那么我么把一个点向外跳的状态在状态树上表示为这个点的儿子
向内表示为父亲 那么如果这两个初始状态在树上有lca就有答案 这个我们可以先像倍增求lca一样
先将两个状态跳到同一深度然后再二分深度(答案)及可以辣
#include<cstdio>
#include<cstring>
#include<algorithm>
using std::swap;
using std::min;
const int inf=0x3f3f3f3f;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int len,lena,lenb,h;
struct pos{int x,y,z;}a,b,yy,ly;
pos up(pos s,int T){
for(len=;T;len+=h){
int l=s.y-s.x,r=s.z-s.y;
if(l==r) return s;
if(l<r) h=min(T,(r-)/l),s.x+=h*l,s.y+=h*l;
else h=min(T,(l-)/r),s.y-=h*r,s.z-=h*r;
T-=h;
}
return s;
}
void sort(pos &s){
if(s.x>s.z) swap(s.x,s.z);
if(s.x>s.y) swap(s.x,s.y);
if(s.y>s.z) swap(s.y,s.z);
}
int main(){
a.x=read(); a.y=read(); a.z=read(); sort(a);
b.x=read(); b.y=read(); b.z=read(); sort(b);
yy=up(a,inf); lena=len;
ly=up(b,inf); lenb=len;
if(yy.x!=ly.x||yy.y!=ly.y||yy.z!=ly.z) return puts("NO"),;
puts("YES");
if(lena<lenb) swap(a,b),swap(lena,lenb);
a=up(a,lena-lenb);
int l=,r=lenb;
while(l<r){
int mid=(l+r)>>;
yy=up(a,mid); ly=up(b,mid);
if(yy.x==ly.x&&yy.y==ly.y&&yy.z==ly.z) r=mid;
else l=mid+;
}
printf("%d",(l<<)+lena-lenb);
return ;
}

bzoj 2144: 跳跳棋——倍增/二分的更多相关文章

  1. 【LCA】bzoj 2144:跳跳棋

    2144: 跳跳棋 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 248  Solved: 121[Submit][Status][Discuss] ...

  2. [BZOJ 2144]跳跳棋

    Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...

  3. 【BZOJ 2144】 2144: 跳跳棋 (倍增LCA)

    2144: 跳跳棋 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 642  Solved: 307 Description 跳跳棋是在一条数轴上进行的 ...

  4. BZOJ2144跳跳棋——LCA+二分

    题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的 游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...

  5. bzoj2144: 跳跳棋(二分/倍增)

    思维好题! 可以发现如果中间的点要跳到两边有两种情况,两边的点要跳到中间最多只有一种情况. 我们用一个节点表示一种状态,那么两边跳到中间的状态就是当前点的父亲,中间的点跳到两边的状态就是这个点的两个儿 ...

  6. 跳跳棋[LCA+二分查找]-洛谷1852

    传送门 这真是一道神仙题 虽然我猜到了这是一道LCA的题 但是... 第一遍看题,我是怎么也没想到能和树形图扯上关系 并且用上LCA 但其实其实和上一道lightoj上的那道题很类似 只不过那时一道很 ...

  7. BZOJ 2783 树 - 树上倍增 + 二分

    传送门 分析: 对每个点都进行一次二分:将该点作为链的底端,二分链顶端所在的深度,然后倍增找到此点,通过前缀和相减求出链的权值,并更新l,r. code #include<bits/stdc++ ...

  8. 【bzoj2144】跳跳棋

    2144: 跳跳棋 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 492  Solved: 244[Submit][Status][Discuss] ...

  9. P1852 [国家集训队]跳跳棋

    P1852 [国家集训队]跳跳棋 lca+二分 详细解析见题解 对于每组跳棋,我们可以用一个三元组(x,y,z)表示 我们发现,这个三元组的转移具有唯一性,收束性 也就是说,把每个三元组当成点,以转移 ...

随机推荐

  1. Java之I/O流(第2部分)

    1. 节点类类型: 2. 访问文件: Demo_1: import java.io.FileInputStream; import java.io.FileNotFoundException; imp ...

  2. PAT L1-039 古风排版

    https://pintia.cn/problem-sets/994805046380707840/problems/994805091888906240 中国的古人写文字,是从右向左竖向排版的.本题 ...

  3. intellij idea 之 CheckStyle 代码格式校验

  4. Java多线程同步机制之同步块(方法)——synchronized

    在多线程访问的时候,同一时刻只能有一个线程能够用 synchronized 修饰的方法或者代码块,解决了资源共享.下面代码示意三个窗口购5张火车票: package com.jikexueyuan.t ...

  5. Axure RP 的安装与卸载

    官网:http://www.axure.com/download 支持Windows和Mac

  6. BZOJ 1103 大都市(dfs序+树状数组)

    应该是一道很水的题吧... 显然可以用树链剖分解决这个问题,虽然不知道多一个log会不会T.但是由于问题的特殊性. 每次修改都是将边权为1的边修改为0,且询问的是点i到根节点的路径长度. 令点i到根节 ...

  7. BZOJ4835 遗忘之树

    点分树上的某个点和其某个子树在原树中的连接方式一般来说可以是由该点连向子树内任意一点,这样方案数即为所有子树大小之积.但有一种特殊情况是连接某点后导致编号最小的重心更换,只要去掉这种就行了,具体地可以 ...

  8. subprocess模块详解

    subprocess是Python与系统交互的一个库,该模块允许生成新进程,连接到它们的输入/输出/错误管道,并获取它们的返回代码. 该模块旨在替换几个较旧的模块和功能: os.system os.s ...

  9. 前端开发学习之——使用jquery/javascript判断及改变checkbox选中状态

    一.使用jquery判断及改变checkbox选中状态 1.使用JQuery判断一个checkbox 是否为选中: (1).attr('checked) 看JQuery版本1.6+返回:”checke ...

  10. ARC077C pushpush 递推

    ---题面--- 题解: 貌似一般c题都是递推... 观察到最后一个插入的数一定在第一个,倒数第二个插入的数一定在倒数第一个,倒数第三个插入的数一定在第2个,倒数第四个插入的数一定在倒数第2个…… O ...