Description

  

  传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。

  

​  本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。

  

  如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。

  

Input

  

​  第一行为整数\((k(k\le1000)\)。即火柴堆数。第二行包含\(k\)个不超过\(10^9\)的正整数,即各堆的火柴个数。

  

Output

  

​  输出第一回合拿的火柴数目的最小值。如果不能保证取胜,输出-1。

  

Sample Input

  

  6

  

  5 5 6 6 5 5

  

Sample Output

  

  21

  

  

  

Solution

  

  Nim游戏先手必胜的条件是所有每一堆的数量异或和不为0。那么我们现在所要做的,是保留一个集合S,使得这个集合的每一个子集异或和都不为0。这样,不论对手从这个集合中删去哪些子集,剩余的元素异或和都不为0。同时,我们要使得删去的元素尽可能小,即选择保留的元素尽可能大。所以,我们的目的其实是构造一组权值最大的线性基。

  

  我们按照每一堆的火柴数a_i从大到小来贪心,尝试将它加入一个线性基中。如果成功加入,则视之为S中的元素;否则,则视为被舍弃的元素,统计入答案中。

  

  这样,我们就可以构造出一组权值最大的线性基。

  

  至于为什么贪心是正确的,不会出现舍弃权值较大的元素来让某些权值较小的元素顺利加入线性基这种决策,可能要用到拟阵证明,这个坑慢慢补吧。但是貌似如此的线性基的带权问题,大概都可以套用贪心的方法,应该是得益于拟阵的相似证明。

  

  

  

   

Code

  

#include <cstdio>
#include <algorithm>
using namespace std;
const int N=105;
int n,a[N];
long long ans;
namespace LB{
const int B=30;
int a[B];
bool insert(int x){
for(int i=B-1;i>=0;i--)
if(x&(1<<i)){
if(a[i]) x^=a[i];
else{a[i]=x;break;}
}
return x;
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",a+i);
sort(a+1,a+1+n);
for(int i=n;i>=1;i--)
if(!LB::insert(a[i])) ans+=a[i];
printf("%lld\n",ans);
return 0;
}

【BZOJ3105】【CQOI2013】新Nim游戏的更多相关文章

  1. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

  2. BZOJ3105: [cqoi2013]新Nim游戏

    题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: #include ...

  3. BZOJ3105:[CQOI2013]新Nim游戏(线性基,贪心)

    Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...

  4. BZOJ3105: [cqoi2013]新Nim游戏(Xor线性无关组)

    Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...

  5. 【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)

    bzoj3105,懒得复制 Solution: 首先你要有一个前置技能:如果每堆石子异或和为\(0\),则先手比输 这题我们怎么做呢,因为我们没人要先取掉几堆,为了赢对方一定会使剩下的异或和为\(0\ ...

  6. 【贪心】【线性基】bzoj2460 [BeiJing2011]元素 / bzoj3105 [cqoi2013]新Nim游戏

    p2460: #include<cstdio> #include<algorithm> using namespace std; #define N 1001 typedef ...

  7. bzoj3105 [cqoi2013]新Nim游戏——贪心+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3105 首先,要先手必胜,就不能取后让剩下的火柴中存在异或和为0的子集,否则对方可以取成异或和 ...

  8. 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基

    [BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...

  9. bzoj 3105: [cqoi2013]新Nim游戏 异或高消 && 拟阵

    3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 535  Solved: 317[Submit][Stat ...

  10. 洛谷P4301 [CQOI2013]新Nim游戏

    P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...

随机推荐

  1. 《Postgre SQL 即学即用 (第三版)》 分享 pdf下载

    链接:https://pan.baidu.com/s/1akR33VqEkt99UqJUfiy2OA提取码:3p1k

  2. 如何判断Map中的key或value是什么类型

    在上班写工具类时,遇到了一个问题,将xml文件的节点都放入map容器中时,map的value也是一个map,导致取map的value时,需要判断这个value的数据类型,用到了一下说的这些知识: 对于 ...

  3. k8s踩坑记第2篇--3个IP折磨人的故事

    例子来源于<Kubernetes实践指南>一书.问题依然没有解决,求助大神. 测试环境 Centos 7.0 docker 1.13.1 kubectl v1.5.2 etcd 3.2.1 ...

  4. XSS跨站脚本

    1.反射型 非持久化,需要用户自己点击才可以触发 通常出现在搜索框 <?php $id=$_GET['id']; echo $id; ?> http://127.0.0.1/test/sc ...

  5. cobbler部署以及使用

    常用软件安装及使用目录 资源链接:https://pan.baidu.com/s/1yfVnuSgY5vOTh-B74tpVyw   网盘分享的文件在此 cobbler第一次操作history. ec ...

  6. JavaScript设计模式-----模板方法模式

    模板方法模式是一种只需要使用继承就可以实现的非常简单点的模式. 模板方法模式有两部分组成,第一部分是抽象父类,第二部分是具体的实现子类.通常在抽象父类中封装了子类的算法框架,包括实现 一些公共方法以及 ...

  7. Python图形界面开发—wxPython库的布局管理及页面切换

    前言 wxPython是基于Python的跨平台GUI扩展库,对wxWidgets( C++ 编写)封装实现.GUI程序的开发中界面布局是很重要的一个部分,合理的页面布局能够给予用户良好使用体验.虽然 ...

  8. Windows搭建python开发环境

    python你不去认识它,可能没什么,一旦你认识了它,你就会爱上它 基本概念Python(英语发音:/ˈpaɪθən/), 是一种面向对象.解释型计算机程序设计语言,由Guido van Rossum ...

  9. XSS攻击防御篇

    前言   上篇文章中提到了 XSS 攻击,而且,也从几个方面介绍了 XSS 攻击带来的严重影响.那么,这篇文章中,主要是针对 XSS 攻击做一个基本的防御,看看可以通过几种方式来修复这个特别常见的安全 ...

  10. 为什么找程序员一定要看他的 GitHub

    听说 最开始听到这句话是某知名互联网公司大牛告诉我的,我很不以为然,不过迫于他是"leader"我也注册了一个 highsea (广告 0.0):当然我可懒得 push 更别提 c ...