传送门

我是真的弱,推式子只能推一半

下面假设\(n<m\)

考虑题目要求的东西,可以考虑每个gcd的贡献,即$$\prod_{d=1}{n}f[d]{\sum_{i=1}{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}{\lfloor\frac{m}{d}\rfloor}[gcd(i,j)=1]}$$

由\(n=\sum_{d|n} \mu[d]\),得$$\prod_{d=1}{n}f[d]{\sum_{i=1}{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}{\lfloor\frac{m}{d}\rfloor}\sum_{k|i,k|j}\mu[k]}$$$$\prod_{d=1}{n}f[d]{\sum_{k=1}^{\lfloor\frac{n}{d}\rfloor}\mu[k]\lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloor}$$

大力数论分块即可获得60'好成绩

如果我们令\(t=kd\),然后把t提出来,即则$$\prod_{t=1}{n}\prod_{d|t}f[d]{\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor\mu[\lfloor\frac{n}{d}\rfloor]}$$$$\prod_{t=1}{n}(\prod_{d|t}f[d]{\mu[\lfloor\frac{n}{d}\rfloor]})^{\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor}$$

里面的可以枚举每个数倍数预处理,然后就是数论分块

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define ldb long double
#define il inline
#define re register using namespace std;
const int N=1e6+10,mod=1e9+7;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
il int fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;}return an;}
bool v[N];
int prm[N],mu[N],tt,fb[N],ifb[N],f[N],ivf[N]; int main()
{
fb[0]=0,fb[1]=1,ifb[0]=ifb[1]=1;
for(int i=2;i<=N-10;++i) fb[i]=(fb[i-1]+fb[i-2])%mod,ifb[i]=fpow(fb[i],mod-2);
mu[1]=1;
for(int i=2;i<=N-10;++i)
{
if(!v[i]) v[i]=1,prm[++tt]=i,mu[i]=-1;
for(int j=1;j<=tt&&i*prm[j]<=N-10;++j)
{
v[i*prm[j]]=1,mu[i*prm[j]]=-mu[i];
if(i%prm[j]==0) {mu[i*prm[j]]=0;break;}
}
}
for(int i=0;i<=N-10;++i) f[i]=1;
for(int i=1;i<=N-10;++i)
for(int j=1;i*j<=N-10;++j)
f[i*j]=1ll*f[i*j]*((~mu[j])?fpow(fb[i],mu[j]):ifb[i])%mod;
ivf[0]=1;
for(int i=1;i<=N-10;++i) f[i]=1ll*f[i]*f[i-1]%mod,ivf[i]=fpow(f[i],mod-2);
int T=rd();
while(T--)
{
int n=rd(),m=rd(),ans=1;
if(n>m) swap(n,m);
for(int i=1,j;i<=n;i=j+1)
{
j=min(n/(n/i),m/(m/i));
ans=1ll*ans*fpow(1ll*f[j]*ivf[i-1]%mod,1ll*(m/i)*(n/i)%(mod-1))%mod;
}
printf("%d\n",ans);
}
return 0;
}

luogu P3704 [SDOI2017]数字表格的更多相关文章

  1. P3704 [SDOI2017]数字表格

    P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...

  2. P3704 [SDOI2017]数字表格 (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P3704 [题解] https://www.luogu.org/blog/cjyyb/solution-p3 ...

  3. bzoj 4816: 洛谷 P3704: [SDOI2017]数字表格

    洛谷很早以前就写过了,今天交到bzoj发现TLE了. 检查了一下发现自己复杂度是错的. 题目传送门:洛谷P3704. 题意简述: 求 \(\prod_{i=1}^{N}\prod_{j=1}^{M}F ...

  4. 洛谷P3704 [SDOI2017]数字表格

    题目描述 Doris刚刚学习了fibonacci数列.用f[i]f[i] 表示数列的第ii 项,那么 f[0]=0f[0]=0 ,f[1]=1f[1]=1 , f[n]=f[n-1]+f[n-2],n ...

  5. 洛谷 P3704 [SDOI2017]数字表格(莫比乌斯函数)

    题面传送门 题意: 求 \[\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)} \] \(T\) 组测试数据,\(1 \leq T \leq ...

  6. 洛咕 P3704 [SDOI2017]数字表格

    大力推式子 现根据套路枚举\(\gcd(i,j)\) \(ans=\Pi_{x=1}^nfib[x]^{\sum_{i=1}^{n/x}\sum_{j=1}^{n/x}[\gcd(i,j)=1]}\) ...

  7. Luogu 3704 [SDOI2017]数字表格

    列一下式子: $\prod_{i = 1}^{n}\prod_{j = 1}^{m}fib_{gcd(i, j)}$ 很套路的变成这样: $\prod_{d = 1}^{min(n, m)}fib_{ ...

  8. 洛谷P3704 [SDOI2017]数字表格(莫比乌斯反演)

    传送门 yyb大佬太强啦…… 感觉还是有一点地方没有搞懂orz //minamoto #include<cstdio> #include<iostream> #include& ...

  9. 并不对劲的bzoj4816:loj2000:p3704[SDOI2017]数字表格

    题目大意 有函数\(f(x)\),\(f(0)=0,f(1)=1,f(x)=f(x-1)+f(x-2)\) \(t\)(\(t\leq1000\))组询问,每次给定\(n,m\)(\(n,m\leq1 ...

随机推荐

  1. Java面试题-基础知识

    参考文章:Java面试题-基础知识 基础能力 什么是值传递和引用传递 线程状态有哪些,它们之间是如何转换的 进程与线程的区别,进程间如何通讯,线程间如何通讯? HashMap的数据结构是什么?如何实现 ...

  2. Vim保存时权限不足

    保存时权限不足,由于打开时忘记在命令前添加sudo.我们并不需要放弃修改,从新以root权限打开 解决方案 命令模式使用:w !sudo tee %提权,保存

  3. 洛谷P4362 贪吃的九头龙

    大意就是把一棵树的点染成m种颜色,其中1号点的颜色必须染恰好k个节点. 总代价是所有两端点颜色相同的边的边权. 求最小代价. 解:可以分为m == 2和m > 2两个题. m > 2时有代 ...

  4. 1145. Hashing - Average Search Time

      The task of this problem is simple: insert a sequence of distinct positive integers into a hash ta ...

  5. [hdu5215][Cycle]

    题目链接 思路 首先可以通过二分图染色找到奇环和一部分偶环.这个比较简单 但是还有一种偶环容易忽略. 如图(别问我为啥没节点4) 第一次可以找到1-2-3-1)这个奇环,第二次可以找到(3-5-6-3 ...

  6. jmeter的介绍和使用二

    三. 1.http的请求默认值 当一个项目有多个模块,他们的host都是一致的,为了不重复的写host或者当某一天host变了,只需要修改一个地方就好.比如下面的两个请求,可以把host分离出来,所以 ...

  7. HDU 5965 扫雷

    扫雷游戏是晨晨和小璐特别喜欢的智力游戏,她俩最近沉迷其中无法自拔. 该游戏的界面是一个矩阵,矩阵中有些格子中有一个地雷,其余格子中没有地雷. 游戏中,格子可能处于己知和未知的状态.如果一个己知的格子中 ...

  8. (最小生成树) codeVs 1231 最优布线问题

    题目描述 Description 学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用可能是不同的.为了节省费用,我们考虑采用间接数据传输结束,就是一台计算机可以间接地通过其他计算机实现和另外 ...

  9. Linux设备树(一 概述)

    一 概述 设备树(Device tree)是一套用来描述硬件属相的规则.ARM Linux采用设备树机制源于2011年3月份Linux创始人Linus Torvalds发的一封邮件,在这封邮件中他提倡 ...

  10. CSS设置边框、符号、背景样式、链接属性

    一.CSS边框空白 padding-top:10px; /*上边框留空白*/ padding-right:10px; /*右边框留空白*/ padding-bottom:10px; /*下边框留空白* ...