import cv2 as cv
import numpy as np """
matchTemplate():
参数image:待搜索的图像(大图)
参数temple:搜索模板,需要和原图一样的数据类型且尺寸不能大于源图像
参数result:比较结果的映射图像,其必须为单通道,32位浮点型图像,如果原图(待搜索图像)尺寸为W*H,而temple尺寸为w*h,则result尺寸一定是
(W-w+1)*(H-h+1)
参数method:指定匹配方法,有如下几种:
CV_TM_SQDIFF:平方差匹配法
CV_TM_SQDIFF_NORMED:归一化平方差匹配法
CV_TM_CCORR:相关匹配法
CV_TM_CCORR_NORMED:归一化相关匹配法
CV_TM_CCOEFF:系数匹配法
CV_TM_CCOEFF_NORMED:化相关系数匹配法
"""
"""
minMaxLoc()函数
作用:一维数组当作向量,寻找矩阵中最小值和最大值位置
""" def match_image():
target = cv.imread(r"C:\Users\lenovo\Desktop\test\2.jpg")
temple = cv.imread(r"C:\Users\lenovo\Desktop\test\1.png")
# shape是获取矩阵的长度
print(temple.shape)
# 获取到小图的尺寸
th, tw = temple.shape[:2]
result = cv.matchTemplate(target, temple, cv.TM_SQDIFF_NORMED)
# 返回匹配的最小坐标
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(result)
tl=min_loc
print(tl)
br = (int(tl[0]) + tw, int(tl[1]) + th)
print('br==',br)
cv.rectangle(target, tl, br, [0, 255, 0])
cv.imshow("匹配结果" + np.str(cv.TM_SQDIFF_NORMED), target) match_image()
cv.waitKey(0)
cv.destroyAllWindows()

cv2.matchTemplate()函数的应用,匹配图片后画出矩形的更多相关文章

  1. 机器学习进阶-图像特征sift-SIFT特征点 1.cv2.xfeatures2d.SIFT_create(实例化sift) 2. sift.detect(找出关键点) 3.cv2.drawKeypoints(画出关键点) 4.sift.compute(根据关键点计算sift向量)

    1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None)  找出 ...

  2. 机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..

    1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 ...

  3. 机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMaxLoc(找出矩阵最大值和最小值的位置(x,y)) 3.cv2.rectangle(在图像上画矩形)

    1. cv2.matchTemplate(src, template, method)  # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配 ...

  4. 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)

    1. sift.detectAndComputer(gray, None)  # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...

  5. OpenCvSharp 通过特征点匹配图片

    现在的手游基本都是重复操作,一个动作要等好久,结束之后继续另一个动作.很麻烦,所以动起了自己写一个游戏辅助的心思. 这个辅助本身没什么难度,就是通过不断的截图,然后从这个截图中找出预先截好的能代表相应 ...

  6. 【Auto.js images.matchTemplate() 函数的特点】

    Auto.js  images.matchTemplate() 函数的特点 官方文档:https://hyb1996.github.io/AutoJs-Docs/#/images?id=imagesm ...

  7. android拍照获得图片及获得图片后剪切设置到ImageView

    ok,这次的项目需要用到设置头像功能,所以做了个总结,直接进入主题吧. 先说说怎么 使用android内置的相机拍照然后获取到这张照片吧 直接上代码: Intent intentFromCapture ...

  8. 机器学习进阶-图像形态学操作-梯度运算 cv2.GRADIENT(梯度运算-膨胀图像-腐蚀后的图像)

    1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐 ...

  9. 第三百四十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—编写spiders爬虫文件循环抓取内容—meta属性返回指定值给回调函数—Scrapy内置图片下载器

    第三百四十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—编写spiders爬虫文件循环抓取内容—meta属性返回指定值给回调函数—Scrapy内置图片下载器 编写spiders爬虫文件循环 ...

随机推荐

  1. 利用Redis keyspace notification(键空间通知)实现过期提醒

    一.序言: 本文所说的定时任务或者说计划任务并不是很多人想象中的那样,比如说每天凌晨三点自动运行起来跑一个脚本.这种都已经烂大街了,随便一个 Crontab 就能搞定了. 这里所说的定时任务可以说是计 ...

  2. Error Code: 1175. You are using safe update mode and you tried to update a table without a WHERE that uses a KEY column. To disable safe mode, toggle the option in Preferences -> SQL Editor and recon

    数据库默认模式是主键不可进行修改操作,所以需要运行以下语句. SET SQL_SAFE_UPDATES = 0;  -- 出现error1175使用.

  3. POST一下就知道:人生苦短,我用Python!

    Python编程笔记---- 背景: “闸机端”简版程序要求: 读取扫描仪得到的userID; 向服务器发送请求进行验证: 根据返回值(True/False)决定闸机的信号. 1. 文件的读取 网上买 ...

  4. C#零基础入门-0-开发工具

    Visual Studio sharpDevelop:http://www.icsharpcode.net/OpenSource/SD/Download/ Visual Studio Express

  5. 八皇后问题(C#)

    八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同 ...

  6. golang 使用匿名结构体的问题

    golang允许使用匿名结构体,形如 type Test struct { param1 struct { param2 string } } 一般在使用的时候可以直接这样初始化 a := Test{ ...

  7. 随机IP

    function rand_ip(){ $ip_longs = array( array('607649792', '608174079'),        //36.56.0.0-36.63.255 ...

  8. hashtable 简单介绍

    Hashtable 1 注意小写 table 2 常用方法 void                clear() boolean             contains(Object value) ...

  9. 一个ELK日志检索实施案例

    figure:first-child { margin-top: -20px; } #write ol, #write ul { position: relative; } img { max-wid ...

  10. 通过 docker 搭建自用的 gitlab 服务

    前言 git 是当下如日中天的版本管理系统.现在如果不是工作在 git 版本管理系统之下,几乎都不好意思和人打招呼了.有很多现成的互联网的 git 服务提供给大家使用,例如号称程序员社交网络的 Git ...