cogs 547:[HAOI2011] 防线修建
★★★☆ 输入文件:defense.in 输出文件:defense.out 简单对比
时间限制:1 s 内存限制:128 MB
题目描述:
近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了。可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢?又由于A国的经费有限,所以希望你能帮忙完成如下的一个任务:
给出你所有的A国城市坐标
A国上层经过讨论,考虑到经济问题,决定取消对i城市的保护,也就是说i城市不需要在防线内了
A国上层询问对于剩下要保护的城市,修建防线的总经费最少是多少
你需要对每次询问作出回答。注意单位1长度的防线花费为1。
A国的地形是这样的,形如下图,x轴是一条河流,相当于一条天然防线,不需要你再修建
A国总是有两个城市在河边,一个点是(0,0),一个点是(n,0),其余所有点的横坐标均大于0小于n,纵坐标均大于0。A国有一个不在(0,0)和(n,0)的首都。(0,0),(n,0)和首都这三个城市是一定需要保护的。

上图中,A,B,C,D,E点为A国城市,且目前都要保护,那么修建的防线就会是A-B-C-D,花费也就是线段AB的长度+线段BC的长度+线段CD的长度
如果,这个时候撤销B点的保护,那么防线变成下图

输入格式:
第一行,三个整数n,x,y分别表示河边城市和首都是(0,0),(n,0),(x,y)。
第二行,一个整数m。
接下来m行,每行两个整数a,b表示A国的一个非首都非河边城市的坐标为(a,b)。
再接下来一个整数q,表示修改和询问总数。
接下来q行每行要么形如1 i,要么形如2,分别表示撤销第i个城市的保护和询问。
输出格式:
对于每个询问输出1行,一个实数v,表示修建防线的花费,保留两位小数
样例输入:
4 2 1
2
1 2
3 2
5
2
1 1
2
1 2
2
样例输出:
6.47
5.84
4.47
数据范围:
30%的数据m<=1000,q<=1000
100%的数据m<=100000,q<=200000,n>1
所有点的坐标范围均在10000以内, 数据保证没有重点
题解:
此题要求动态地去维护一个凸包的周长,我们可以发现,要想从凸包上删除一个点然后更新答案并不容易,因为凸包内部的点的信息不好维护,不妨把所有操作先存下来,离线反向操作。每碰到一个操作1,添加一个点,添加点无非是看这个点是在凸包的内部还是外部,内部的就不用管了,对答案并没有什么卵用,如果是在外部,就看在这个点左边的凸包上的点和右边凸包上的点会不会被覆盖,这个用向量的叉积判断即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cstring>
#include<set>
using namespace std;
const double eps=1e-;
int n,x,y,m,q;
double now;
struct Q{
int kin,i;
double ans;
}opt[];
bool vis[];
struct P{
int x,y;
}p[],del[];
inline P operator-(P a,P b){
P t; t.x=a.x-b.x; t.y=a.y-b.y;
return t;
}
inline double operator*(P a,P b){
return a.x*b.y-b.x*a.y;
}
inline bool operator<(P a,P b){
if(a.x==b.x) return a.y<b.y;
return a.x<b.x;
}
inline double dis(P a,P b){
return sqrt((double)((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)));
} set<P> A;
inline void insert(int a,int b){
P x=(P){a,b};
set<P>::iterator r=A.lower_bound(x),l=r,t;
l--;
if((*l-x)*(*r-x)<) return ;
now-=dis(*l,*r);
A.insert(x);
while(r!=A.end()){
t=r; r++;
if((*r-x)*(*t-x)>) break;
now-=dis(*t,*r);
A.erase(t);
}
while(l!=A.begin()){
t=l; l--;
if((*t-x)*(*l-x)>) break;
now-=dis(*t,*l);
A.erase(t);
}
A.insert(x);
l=r=t=A.find(x);
l--; r++;
now+=dis(*l,x)+dis(*r,x);
} int main(){
// freopen("defense.in","r",stdin);
// freopen("defense.out","w",stdout);
scanf("%d%d%d",&n,&x,&y);
scanf("%d",&m);
for(int i=;i<=m;i++) scanf("%d%d",&p[i].x,&p[i].y);
scanf("%d",&q);
for(int i=;i<=q;i++){
scanf("%d",&opt[i].kin);
if(opt[i].kin==){
scanf("%d",&opt[i].i);
vis[opt[i].i]=true;
}
}
P cap; cap.x=x; cap.y=y;
now+=dis((P){,},cap); now+=dis((P){n,},cap);
A.insert((P){,}); A.insert((P){n,}); A.insert((P){x,y});
for(int i=;i<=m;i++){
if(vis[i]==false) insert(p[i].x,p[i].y);
}
for(int i=q;i>=;i--){
if(opt[i].kin==){
opt[i].ans=now;
}
else{
insert(p[opt[i].i].x,p[opt[i].i].y);
}
}
for(int i=;i<=q;i++){
if(opt[i].kin==){
printf("%.2lf\n",opt[i].ans);
}
}
return ;
}
cogs 547:[HAOI2011] 防线修建的更多相关文章
- 【BZOJ 2300】 2300: [HAOI2011]防线修建 (动态凸包+set)
2300: [HAOI2011]防线修建 Description 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上 ...
- BZOJ 2300: [HAOI2011]防线修建( 动态凸包 )
离线然后倒着做就变成了支持加点的动态凸包...用平衡树维护上凸壳...时间复杂度O(NlogN) --------------------------------------------------- ...
- [luogu P2521] [HAOI2011]防线修建
[luogu P2521] [HAOI2011]防线修建 题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国 ...
- P2521 [HAOI2011]防线修建
题目链接:P2521 [HAOI2011]防线修建 题意:给定点集 每次有两种操作: 1. 删除一个点 (除开(0, 0), (n, 0), 与指定首都(x, y)) 2. 询问上凸包长度 至于为什么 ...
- bzoj千题计划236:bzoj2300: [HAOI2011]防线修建
http://www.lydsy.com/JudgeOnline/problem.php?id=2300 维护动态凸包,人懒用的set 用叉积判断,不要用斜率 #include<set> ...
- 【BZOJ2300】[HAOI2011]防线修建 set维护凸包
[BZOJ2300][HAOI2011]防线修建 Description 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可 ...
- 【题解】P2521 [HAOI2011]防线修建(动态凸包)
[题解]P2521 [HAOI2011]防线修建(动态凸包) 凸包是易插入不好删除的东西,按照剧情所以我们时光倒流 然后问题就是维护凸包的周长,支持加入 本来很简单,但是计算几何就是一些小地方经验不足 ...
- BZOJ2300[HAOI2011]防线修建——非旋转treap+凸包(平衡树动态维护凸包)
题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢?又由于 ...
- LG2521 [HAOI2011]防线修建
题意 题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢? ...
随机推荐
- Java--运算符的优先级表
Java运算符的优先级表:
- 基于spring的shiro配置
shiro是一个特别简单,易用的框架,在此记录一下shiro的使用配置. 首先,创建四张表:user role user_role permission,分别为用户.角色.用户与角色关系表和权限 ...
- 【转】虚拟机下CentOS7开启SSH连接
在虚拟机(Vmware Workstation)下,安装了CentOS7,现在想通过SSH工具连接虚拟机中的CentOS7 1. 首先,要确保CentOS7安装了 openssh-server,在终 ...
- 关于Springboot 中注入多个cacheManage 时候 存在报错
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'e ...
- css calc()
w https://developer.mozilla.org/en-US/docs/Web/CSS/calc The calc() CSS function can be used anywhere ...
- arcgis server 无法手动删除切片
背景 问题 场景如下: 切片放置在专门的文件服务器上,通过unc共享路径对外共享.文件服务器的OS为windows server2008R2 想手动更新切片服务的切片.发现同一切片服务,有的比例级别文 ...
- Xshell 连接虚拟机特别慢 解决方案
由于各种原因,xshell连接虚拟机的rhel或者CentOS都几乎是龟速...... 今天专门查了一下解决方案: 原来是ssh的服务端在连接时会自动检测dns环境是否一致导致的,修改为不检测即可,操 ...
- 【opencv】 solvepnp 和 solvepnpRansac 求解 【空间三维坐标系 到 图像二维坐标系】的 三维旋转R 和 三维平移 T 【opencv2使用solvepnp求解rt不准的问题】
参考: pnp问题 与 solvepnp函数:https://www.jianshu.com/p/b97406d8833c 对图片进行二维仿射变换cv2.warpAffine() or 对图片进行二维 ...
- Java设计模式-抽象工厂模式(Abstarct Factory)
抽象工厂模式 举个生活中常见的例子,组装电脑,在组装电脑时,通常需要选择一系列的配件,比如CPU,硬盘,内存,主板,电源,机箱等,为了讨论使用简单,值考虑选择CPU和主板的问题. 事实上,在选择CPU ...
- 安全篇:弱密码python检测工具
安全篇:弱密码python检测工具 https://github.com/penoxcn/PyWeakPwdAudit