STL 源代码剖析 算法 stl_algo.h -- lower_bound
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie
lower_bound(应用于有序区间)
--------------------------------------------------------------------------------------------------------------------------
描写叙述:二分查找,返回一个迭代器指向每个"不小于 value "的元素,
或 value 应该存在的位置
思路:
1.循环直到区间长度为 0
2.假设 *middle < value,在后半段继续查找
3.假设 *middle >= value,在前半段继续查找 (等于的时候也会继续在前半段查找,所以能保证找到的是 lower bound)
源代码:
template <class ForwardIterator, class T>
inline ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
const T& value) {
return __lower_bound(first, last, value, distance_type(first),
iterator_category(first));
} // forward_iterator_tag 版本号
template <class ForwardIterator, class T, class Distance>
ForwardIterator __lower_bound(ForwardIterator first, ForwardIterator last,
const T& value, Distance*,
forward_iterator_tag) {
Distance len = 0;
distance(first, last, len);
Distance half;
ForwardIterator middle; while (len > 0) {
half = len >> 1;
middle = first;
advance(middle, half); // 由于仅仅是 ForwardIterator,不能採用 middle = middle + half 的方式
if (*middle < value) {
first = middle;
++first;
len = len - half - 1;
} // 由于 *middle >= value 时,会在前半段继续查找。所以终于找到的是 lower bound
else
len = half;
}
return first;
} // random_access_iterator_tag 版本号
template <class RandomAccessIterator, class T, class Distance>
RandomAccessIterator __lower_bound(RandomAccessIterator first,
RandomAccessIterator last, const T& value,
Distance*, random_access_iterator_tag) {
Distance len = last - first; // 整个区间长度
Distance half;
RandomAccessIterator middle; while (len > 0) {
half = len >> 1; //除以2
middle = first + half;
if (*middle < value) {
first = middle + 1;
len = len - half - 1; // -half-1 是由于前面那段有first指向的元素和half指向的区间
}
else //为什么这种代码能保证找到的是 lower bound ?--> 由于小于等于都是到前面一段区间查找,所以最后找到的一定是 lower bound
len = half;
}
return first;
}
演示样例:
int main()
{
int A[] = { 1, 2, 3, 3, 3, 5, 8 };
const int N = sizeof(A) / sizeof(int); for (int i = 1; i <= 10; ++i) {
int* p = lower_bound(A, A + N, i);
cout << "Searching for " << i << ". ";
cout << "Result: index = " << p - A << ", ";
if (p != A + N)
cout << "A[" << p - A << "] == " << *p << endl;
else
cout << "which is off-the-end." << endl;
}
}
/*
The output is:
Searching for 1. Result: index = 0, A[0] == 1
Searching for 2. Result: index = 1, A[1] == 2
Searching for 3. Result: index = 2, A[2] == 3
Searching for 4. Result: index = 5, A[5] == 5
Searching for 5. Result: index = 5, A[5] == 5
Searching for 6. Result: index = 6, A[6] == 8
Searching for 7. Result: index = 6, A[6] == 8
Searching for 8. Result: index = 6, A[6] == 8
Searching for 9. Result: index = 7, which is off-the-end.
Searching for 10. Result: index = 7, which is off-the-end.
*/
STL 源代码剖析 算法 stl_algo.h -- lower_bound的更多相关文章
- STL 源代码剖析 算法 stl_algo.h -- search
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie search --------------------------------------- ...
- STL 源代码剖析 算法 stl_algo.h -- equal_range
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie equal_range(应用于有序区间) ------------------------- ...
- STL 源代码剖析 算法 stl_algo.h -- partial_sort / partial_sort_copy
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie partial_sort / partial_sort_copy ------------- ...
- STL 源代码剖析 算法 stl_algo.h -- inplace_merge
本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie inplace_merge(应用于有序区间) ----------------------- ...
- STL 源代码剖析 算法 stl_algo.h -- random_shuffle
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie random_shuffle ------------------------------- ...
- STL 源代码剖析 算法 stl_algo.h -- merge sort
本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie merge sort ----------------------------------- ...
- STL 源代码剖析 算法 stl_algo.h -- partition
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie partition ------------------------------------ ...
- STL 源代码剖析 算法 stl_algo.h -- next_permutation
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie next_permutation ----------------------------- ...
- STL 源代码剖析 算法 stl_algo.h -- nth_element
本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie nth_element ---------------------------------- ...
随机推荐
- java项目
http://www.java1234.com/a/kaiyuan/java/ http://www.cnblogs.com/burellow/archive/2011/04/22/2024871.h ...
- poj 2031 Building a Space Station(prime )
这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...
- poj3666
一道不错的dp题 就是最小修改代价,使序列变为一个非下降序或非上升(由于数据较弱直接求非下降即可,当然非上升非下降本质是一样的) 观察可得到,修改后得到的数列中的元素最后一定都在原序列中: 由此我们可 ...
- echarts-noDataLoadingOption问题
目前echarts暂时不支持noDataLoadingOption外挂,所以我为此diy了一个无数据展示文字. 但是echarts很奇怪,它是判断serises==[]空数组才会自动出现echarts ...
- UVa 673 (括号配对) Parentheses Balance
本来是当做水题来做的,后来发现这道题略坑. 首先输入的字符串可能是空串,所以我用了gets函数,紧接着就被scanf("%d", &n)后面的换行符坑掉了. 于是乎再加一句 ...
- Java [Leetcode 104]Maximum Depth of Binary Tree
题目描述: Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along th ...
- InnoDB关键特性之insert buffer
insert buffer 是InnoDB存储引擎所独有的功能.通过insert buffer,InnoDB存储引擎可以大幅度提高数据库中非唯一辅助索引的插入性能. 数据库对于自增主键值的插入是顺序的 ...
- HDU 5675 ztr loves math
ztr loves math Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- 用Apache Kafka构建流数据平台
近来,有许多关于“流处理”和“事件数据”的讨论,它们往往都与像Kafka.Storm或Samza这样的技术相关.但并不是每个人都知道如何将这种技术引入他们自己的技术栈.于是,Confluent联合创始 ...
- A Pretty Good Splash Screen in C#
http://www.codeproject.com/Articles/5454/A-Pretty-Good-Splash-Screen-in-C