BZOJ 1188 分裂游戏(sg函数)
如果把每堆巧克力看做一个子游戏,那么子游戏会互相影响。
如果把全部堆看做一个子游戏,那么状态又太多。
如果把每一个单独的巧克力看成一个子游戏的话,那么状态很少又不会互相影响。
令sg[i]表示一个巧克力在第i堆的sg值。那么sg[i]=mex(sg[j]^sg[k])(k>=j>i);边界状态为sg[n]=0.
所以这整个游戏的sg值就是这些巧克力的异或和了。
由于n<=21.所以可以O(n^3)枚举第一步,再看第一步转移后游戏的异或值即可。
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[N], sg[N], vis[]; int main ()
{
int T, n;
scanf("%d",&T);
while (T--) {
scanf("%d",&n);
FOR(i,,n) scanf("%d",a+i);
sg[n]=;
for (int i=n-; i>=; --i) {
mem(vis,);
FOR(j,i+,n) FOR(k,j,n) vis[sg[j]^sg[k]]=;
for (int j=; ; ++j) if (!vis[j]) {sg[i]=j; break;}
}
int ans=, flag=, num=, ansx, ansy, ansz;
FOR(i,,n) if (a[i]&) ans^=sg[i];
if (!ans) {printf("-1 -1 -1\n0\n"); continue;}
FOR(i,,n) FOR(j,i+,n) FOR(k,j,n) {
int tmp=ans^sg[i]^sg[j]^sg[k];
if (tmp==) {
if (!flag) ansx=i, ansy=j, ansz=k, flag=;
++num;
}
}
printf("%d %d %d\n%d\n",ansx-,ansy-,ansz-,num);
}
return ;
}
BZOJ 1188 分裂游戏(sg函数)的更多相关文章
- bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理
[HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1394 Solved: 847[Submit][Status][Dis ...
- BZOJ 1188 / Luogu P3185 [HNOI2007]分裂游戏 (SG函数)
题意 有n个格子,标号为0 ~ n-1,每个格子上有若干石子,每次操作可以选一个0 ~ n-2的格子上的一颗石子,分裂为两颗,然后任意放在后面的两个格子内,这两个格子可以相同.求使先手必胜的第一步的方 ...
- BZOJ1188 [HNOI2007]分裂游戏(SG函数)
传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...
- bzoj 1188 : [HNOI2007]分裂游戏 sg函数
题目链接 给n个位置, 每个位置有一个小球. 现在两个人进行操作, 每次操作可以选择一个位置i, 拿走一个小球.然后在位置j, k(i<j<=k)处放置一个小球. 问你先进行什么操作会先手 ...
- 组合游戏 - SG函数和SG定理
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]
小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如 ...
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)
Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 871 Solved: 365[Submit][Status][Discuss] Description ...
- BZOJ 1874 取石子游戏 - SG函数
Description $N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜 $A_i <= 1000$,$ B_i <= 10$ Solution 由于数据很小, ...
- Wannafly挑战赛23 T2游戏 SG函数
哎,被卡科技了,想了三个小时,最后还是大佬给我说是\(SG\)函数. \(SG\)函数,用起来很简单,证明呢?(不可能的,这辈子都是不可能的) \(SG\)定理 游戏的\(SG\)函数就是各个子游戏的 ...
随机推荐
- 自己在UWP程序上调用usb转串口的路程
之前一直是在普通的framework环境下写串口,使用的类为 SerialPort 这个类大家可能比较熟悉.但是在UWP的开发里,使用的是 SerialDevice 这个类,是不一样的. 1. 清单文 ...
- PostgreSQL的 synchronous_standby_names 参数学习
磨砺技术珠矶,践行数据之道,追求卓越价值回到上一级页面: PostgreSQL集群方案相关索引页 回到顶级页面:PostgreSQL索引页[作者 高健@博客园 luckyjackgao@gm ...
- 分类问题中的“维数灾难” - robotMax
分类问题中的“维数灾难” - robotMax 在看机器学习的论文时,经常会看到有作者提到“curse of dimensionality”,中文译为“维数灾难”,这到底是一个什么样的“灾难”?本文将 ...
- 【LG4091】[HEOI2016/TJOI2016]求和
[LG4091][HEOI2016/TJOI2016]求和 题面 要你求: \[ \sum_{i=0}^n\sum_{j=0}^iS(i,j)*2^j*j! \] 其中\(S\)表示第二类斯特林数,\ ...
- 一个web应用的诞生(12)--再探首页
就要面对本章的一个难点了,说是难点可能仅仅对于我来说,毕竟我是一个js渣,既然首页打算使用动态加载的形式,那么与后台交互的方式就要进行选择,目前比较流行的为RESTful的形式,关于RESTful的文 ...
- python全栈开发-面向对象-初识
python_16_day 函数总结: https://www.processon.com/view/link/5b718274e4b0555b39e1055f 面向过程的程序设计的核心是过程(流水线 ...
- hdu2065"红色病毒"问题(指数母函数+快速幂取模)
"红色病毒"问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- TW实习日记:第十天
今天任务很简单,就是出品项目的时间轴显示页面和动态路由设置.其实时间轴页面很快就做完了,在做完处理完数据之后,然而有很多细节需要打磨,这就又考验了我面向搜索引擎编程的能力,根据需求百度了很多css的样 ...
- Composer指南
安装 windows中安装Composer 一般来说,windows下安装composer有两种办法,一种是直接下载并运行Composer-Setup.exe,这种方法在中国似乎很难完成安装.另一种就 ...
- Redis 总结精讲 看一篇成高手系统4
本文围绕以下几点进行阐述 1.为什么使用redis2.使用redis有什么缺点3.单线程的redis为什么这么快4.redis的数据类型,以及每种数据类型的使用场景5.redis的过期策略以及内存淘汰 ...