转载:http://www.jb51.net/article/118936.htm

本篇文章主要介绍了Python使用plotly绘制数据图表的方法,实例分析了plotly绘制的技巧。

导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示。

不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示。本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示。

Plotly绘图实例:

1、line-plots

绘图效果:

生成的html页面在右上角提供了丰富的交互工具。

代码:

 import plotly.plotly
import plotly.graph_objs as pg def line_plots(output_path):
"""
绘制普通线图
"""
# 数据,x为横坐标,y,z为纵坐标的两项指标,三个array长度相同
dataset = {'x': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
'y': [5, 4, 1,3, 11, 2, 6, 7, 19, 20],
'z': [12, 9, 0, 0, 3, 25, 8, 17, 22, 5]} data_g = []
# 分别插入 y, z
tr_x = pg.Scatter(
x=dataset['x'],
y=dataset['y'],
name='y'
)
data_g.append(tr_x)
tr_z = pg.Scatter(
x=dataset['x'],
y=dataset['z'],
name='z'
)
data_g.append(tr_z) # 设置layout,指定图表title,x轴和y轴名称
layout = pg.Layout(title="line plots", xaxis={'title': 'x'}, yaxis={'title': 'value'})
# 将layout设置到图表
fig = pg.Figure(data=data_g, layout=layout)
# 绘图,输出路径为output_path参数指定
plotly.offline.plot(fig, filename=output_path) if __name__ == '__main__':
line_plots(output_path)

2、scatter-plots

绘图效果:

 import plotly.plotly
import plotly.graph_objs as pg def scatter_plots(output_path):
'''
绘制散点图
'''
dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
'y':[5,4,1,3,11,2,6,7,19,20],
'text':['5_txt','4_txt','1_txt','3_txt','11_txt','2_txt','6_txt','7_txt','19_txt','20_txt']} data_g = [] tr_x = pg.Scatter(
x = dataset['x'],
y = dataset['y'],
text = dataset['text'],
textposition='top center',
mode='markers+text',
name = 'y'
)
data_g.append(tr_x) layout = pg.Layout(title="scatter plots", xaxis={'title':'x'}, yaxis={'title':'value'})
fig = pg.Figure(data=data_g, layout=layout)
plotly.offline.plot(fig, filename=output_path) if __name__ == '__main__':
scatter_plots("C:/Users/fuqia/Desktop/scatter.html")

3、bar-charts

绘图效果:

代码:

 import plotly.plotly
import plotly.graph_objs as pg def bar_charts(name):
'''
绘制柱状图
'''
dataset = {'x':['Windows', 'Linux', 'Unix', 'MacOS'],
'y1':[45, 26, 37, 13],
'y2':[19, 27, 33, 21]}
data_g = []
tr_y1 = pg.Bar(
x = dataset['x'],
y = dataset['y1'],
name = 'v1'
)
data_g.append(tr_y1) tr_y2 = pg.Bar(
x = dataset['x'],
y = dataset['y2'],
name = 'v2'
)
data_g.append(tr_y2)
layout = pg.Layout(title="bar charts", xaxis={'title':'x'}, yaxis={'title':'value'})
fig = pg.Figure(data=data_g, layout=layout)
plotly.offline.plot(fig, filename=name) if __name__ == '__main__':
bar_charts("C:/Users/fuqia/Desktop/bar.html")

4、pie-charts

绘图效果:

代码:

 import plotly.plotly
import plotly.graph_objs as pg def pie_charts(name):
'''
绘制饼图
'''
dataset = {'labels': ['Windows', 'Linux', 'Unix', 'MacOS', 'Android', 'iOS'],
'values': [280, 25, 10, 100, 250, 270]}
data_g = []
tr_p = pg.Pie(
labels = dataset['labels'],
values = dataset['values']
)
data_g.append(tr_p)
layout = pg.Layout(title="pie charts")
fig = pg.Figure(data=data_g, layout=layout)
plotly.offline.plot(fig, filename=name) if __name__ == '__main__':
pie_charts("C:/Users/fuqia/Desktop/bar.html")

5、filled-area-plots

本例是绘制具有填充效果的堆叠线图,适合分析具有堆叠百分比属性的数据

绘图效果:

代码:

 import plotly.plotly
import plotly.graph_objs as pg def filled_area_plots(name):
'''
绘制堆叠填充的线图
'''
dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
'y1':[5,4,1,3,11,2,6,7,19,20],
'y2':[12,9,0,0,3,25,8,17,22,5],
'y3':[13,22,46,1,15,4,18,11,17,20]} #计算y1,y2,y3的堆叠占比
dataset['y1_stack'] = dataset['y1']
dataset['y2_stack'] = [y1+y2 for y1, y2 in zip(dataset['y1'], dataset['y2'])]
dataset['y3_stack'] = [y1+y2+y3 for y1, y2, y3 in zip(dataset['y1'], dataset['y2'], dataset['y3'])] dataset['y1_text'] = ['%s(%s%%)'%(y1, y1*100/y3_s) for y1, y3_s in zip(dataset['y1'], dataset['y3_stack'])]
dataset['y2_text'] = ['%s(%s%%)'%(y2, y2*100/y3_s) for y2, y3_s in zip(dataset['y2'], dataset['y3_stack'])]
dataset['y3_text'] = ['%s(%s%%)'%(y3, y3*100/y3_s) for y3, y3_s in zip(dataset['y3'], dataset['y3_stack'])] data_g = []
tr_1 = pg.Scatter(
x = dataset['x'],
y = dataset['y1_stack'],
text = dataset['y1_text'],
hoverinfo = 'x+text',
mode = 'lines',
name = 'y1',
fill = 'tozeroy' #填充方式: 到x轴
)
data_g.append(tr_1) tr_2 = pg.Scatter(
x = dataset['x'],
y = dataset['y2_stack'],
text = dataset['y2_text'],
hoverinfo = 'x+text',
mode = 'lines',
name = 'y2',
fill = 'tonexty' #填充方式:到下方的另一条线
)
data_g.append(tr_2) tr_3 = pg.Scatter(
x = dataset['x'],
y = dataset['y3_stack'],
text = dataset['y3_text'],
hoverinfo = 'x+text',
mode = 'lines',
name = 'y3',
fill = 'tonexty'
)
data_g.append(tr_3) layout = pg.Layout(title="field area plots", xaxis={'title':'x'}, yaxis={'title':'value'})
fig = pg.Figure(data=data_g, layout=layout)
plotly.offline.plot(fig, filename=name) if __name__ == '__main__':
filled_area_plots("C:/Users/fuqia/Desktop/bar.html")

小结

本文介绍了利用python-plotly绘制数据图的方法,实例中 线图(line plots)、散点图(scatter plots)、柱状图(bar charts)、饼图(pie charts)以及填充堆叠线图(filled area plots)这五种典型的图表基本上涵盖了大部分类型的测试数据,各位小伙伴可以加以变形绘制出更多的漂亮图标。

文中所示代码:test_plotly_jb51.rar

参考资料

1. https://plot.ly/python/basic-charts/

2. https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf

Python使用plotly绘制数据图表的方法的更多相关文章

  1. 5 种使用 Python 代码轻松实现数据可视化的方法

    数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使 ...

  2. [转]5 种使用 Python 代码轻松实现数据可视化的方法

    数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使 ...

  3. 绘制数据图表的又一利器:C3.js

  4. Python使用Plotly绘图工具,绘制饼图

    今天我们来学习一下如何使用Python的Plotly绘图工具,绘制饼图 使用Plotly绘制饼图的方法,我们需要使用graph_objs中的Pie函数 函数中最常用的两个属性values,用于赋值给需 ...

  5. Python使用Plotly绘图工具,绘制甘特图

    今天来讲一下如何使用Python 的绘图工具Plotly来绘制甘特图的方法 甘特图大家应该了解熟悉,就是通过条形来显示项目的进度.时间安排等相关情况的. 我们今天来学习一下,如何使用ployly来绘制 ...

  6. Python使用Plotly绘图工具,绘制直方图

    今天我们再来讲解一下Python使用Plotly绘图工具如何绘制直方图 使用plotly绘制直方图需要用到graph_objs包中的Histogram函数 我们将数据赋值给函数中的x变量,x = da ...

  7. Python使用Plotly绘图工具,绘制面积图

    今天我们来讲一下如何使用Python使用Plotly绘图工具,绘制面积图 绘制面积图与绘制散点图和折线图的画法类似,使用plotly graph_objs 中的Scatter函数,不同之处在于面积图对 ...

  8. 性能测试 基于Python结合InfluxDB及Grafana图表实时采集Linux多主机性能数据

    基于Python结合InfluxDB及Grafana图表实时采集Linux多主机性能数据   by:授客 QQ:1033553122 实现功能 测试环境 环境搭建 使用前提 使用方法 运行程序 效果展 ...

  9. Python使用Plotly绘图工具,绘制柱状图

    使用Plotly绘制基本的柱状图,需要用到的函数是graph_objs 中 Bar函数 通过参数,可以设置柱状图的样式. 通过barmod进行设置可以绘制出不同类型的柱状图出来. 我们先来实现一个简单 ...

随机推荐

  1. Cocos2dx 中的点击事件

    简单记录一下2dx的鼠标交互事件.以及精灵绑定盒的点击判定   Layer 子类的 init方法中:   auto listener = EventListenerTouchOneByOne::cre ...

  2. about Version Control(版本控制)

    what: 版本控制系统是一种软件,它可以帮助您跟踪代码随时间的变化. 在编辑代码时,您告诉版本控制系统对文件进行快照. 版本控制系统将永久保存该快照,以便在以后需要时可以收回它. 如果没有版本控制, ...

  3. iptables filter表 案例、iptables nat表的路由功能 、端口映射

    1.小案例 #!/bin/bashipt="/usr/sbin/iptables"$ipt -F$ipt -P INPUT DROP$ipt -P OUTPUT ACCEPT$ip ...

  4. 基础练习 2n皇后问题

    时间限制:1.0s 内存限制:512.0MB 提交此题 锦囊1 锦囊2 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同 ...

  5. 实验吧—安全杂项——WP之 flag.xls

    点击链接下载文件,是一个xls文件 打开: 需要密码的 下一步,我将后缀名改为TXT,然后搜素关键词“flag”,一个一个查找就可以发现啦~!!!(这是最简单的一种方法)

  6. hibernate--DetachedCriteria(离线条件查询)

    一.叙述 离线条件查询的好处,可以在非dao层封装查询参数,封装完成后,将对象传递到dao层,关联到session后,再去查询数据,这样做dao层可以极大的简化代码.下面通过一个小案例,一起来感受一下 ...

  7. python数据类型及字符编码

    一.python数据类型,按特征划分 1.数字类型 整型:布尔型(True,False).长整型(L),会自动帮你转换成长整型.标准整型 2.序列类型 字符串(str).元组(tuple).列表(li ...

  8. nginx http2 push 试用

    nginx 已经很早就支持http2,今天证书过期,重新申请了一个,同时测试下http2 的push 功能 环境准备 证书 这个结合自己的实际去申请,我使用免费的letsencrypt,支持泛域名证书 ...

  9. ncm 让跨项目配置一致性简单的工具

    多团队写作,确保node 项目依赖以及配置一致性是比较难搞的,所以一些大型的团队 以及框架都是使用单体仓库的模式,比如lerna 等工具. ncm 借鉴了helm .mrm.kyt.yarn 等开发工 ...

  10. heptio scanner kubernetes 集群诊断工具部署说明

    heptio scanner 是一款k8s 集群状态的诊断工具,还是很方便的,但是有一点就是需要使用google 的镜像 参考地址 https://scanner.heptio.com/ 部署 kub ...