0.spark

--------------------------------------------

  transformation

  map

  filter

  repartition

spark核心API

----------------------------------------------------

  [SparkContext]

    连接到spark集群上的入口点

 [HadoopRDD]

    读取hadoop上的数据

 [MapPartitionsRDD]

    针对父RDD的每个分区提供了函数,构成的新类型的RDD

 [PairRDDFunctions]

    对偶RDD函数类

    可用于KV类型RDD的附加函数。可以通过隐式转化

 [ShuffleRDD]

    从shuffle中计算结果的RDD

 [RDD]  

    弹性分布式数据集

    不可变的数据分区集合

    基本操作:map  filter

    分区列表         //数据

    应用给每个切片的计算函数  //行为

    到其他RDD的依赖列表    //依赖关系

    (可选)针对kv类型的RDD分区类

    (可选)首选位置列表

  [DAGScheduler]

      高级调度器层面,实现按照阶段(stage),shuffle按照。

    对每个JOB的各阶段计算有向无环图(DAG),并且跟踪RDD和每个阶段的输出

    找出最小的调度运行作业,将Stage对象以TaskSet的方式提交给底层的调度器

    底层调度器要实现TaskScheduler接口,进而在cluster上运行job  

    TaskSet已经包含了全部的单独的task,这些Task都能够基于cluster的数据进行相应的正确的运行  

  Stage通过在需要shuffle的边界处将RDD打碎,来创建stage对象。

  具有"窄依赖"的RDD操作(比如map/filter)被管道化至另一个taskset中。而具有shuffle依赖的操作则包含多个Stage(一个进行输入,另一个进行输出)

  最后,每个stage都有一个针对其他stage的shuffle依赖,可以计算多个操作。

  

  DAG调度器检测首选位置运行task,通过基于当前缓存状态,并穿肚给底层的task调度器来进行实现,根据shuffle的输出是否丢失处理故障问题

  不是由stage内因为丢失文件而引发的故障有task调度处理,在取消整个stage之前,task会进行少量次数的重试操作

  【术语介绍】

    [job]提交给调度器的顶层工作项目,由ActiveJob表示,是Stage集合。

    [Stage]是task的集合,计算job的中间结果,同一个RDD的每个分区都会应用相同的计算函数。

        在shuffle的边界进行隔离(因此才引入了隔断,需要上一个stage完成之后,才能得到输出结果)

        有两种类型的stage:ResultStage;ShuffleMapStage:对shuffle输出文件的写操作,stage通常可以在job之间进行共享,可以跨越多个job实现共享

        如果job重用了同一个rdd的话,stage通常可以跨越多个job实现共享。

        并行任务的集合,都会计算同一函数,所有task有着同样的shuffle依赖

    [Task]单独的工作单元,发送给每一台主机

    [Cache tracking]DAG调度器可以找出那些RDD被缓存,避免不必要的计算,同时也会记住哪些shufflemap已经输出了结果,可以避免map端shuffle结果重复处理

    [Preferred localtions]

      dag调度器根据rdd的首选位置属性计算task在哪里运行

    [cleanup]运行的作业如果完成就会清除数据结构避免内存泄漏,主要针对耗时应用

    为了容错,同一阶段可能会运行多次 ,称之为"attemp",如果task调度器报告了一个故障,该故障是由于上一个stage丢失输出文件而导致的,DAG调度就会重新提交丢失的stage;DAG调度器会等待一段时间,看其他节点的任务是否失败,然后对丢失的stage重新提交ticketStage

    [ActiveJob]:在Dag调度器中运行job,作业分为两种类型:(1)result job,计算ResultStage来执行action;(2)map-stage job,为shuffleMapStage计算输出结果共下游stage使用,主要使用finalStage字段进行类型的划分;job只跟踪客户端提交的leaf stage,通过调用DAG调度器的submit job或者submitMapStage()方法来实现

Action发生之后,spark流程

------------------------------------

  

  

spark(3)的更多相关文章

  1. Spark踩坑记——Spark Streaming+Kafka

    [TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...

  2. Spark RDD 核心总结

    摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) ...

  3. spark处理大规模语料库统计词汇

    最近迷上了spark,写一个专门处理语料库生成词库的项目拿来练练手, github地址:https://github.com/LiuRoy/spark_splitter.代码实现参考wordmaker ...

  4. Hive on Spark安装配置详解(都是坑啊)

    个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Sp ...

  5. Spark踩坑记——数据库(Hbase+Mysql)

    [TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streami ...

  6. Spark踩坑记——初试

    [TOC] Spark简介 整体认识 Apache Spark是一个围绕速度.易用性和复杂分析构建的大数据处理框架.最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apach ...

  7. Spark读写Hbase的二种方式对比

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 一.传统方式 这种方式就是常用的TableInputFormat和TableOutputForm ...

  8. (资源整理)带你入门Spark

    一.Spark简介: 以下是百度百科对Spark的介绍: Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方 ...

  9. Spark的StandAlone模式原理和安装、Spark-on-YARN的理解

    Spark是一个内存迭代式运算框架,通过RDD来描述数据从哪里来,数据用那个算子计算,计算完的数据保存到哪里,RDD之间的依赖关系.他只是一个运算框架,和storm一样只做运算,不做存储. Spark ...

  10. (一)Spark简介-Java&Python版Spark

    Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月 ...

随机推荐

  1. luogu P1314 聪明的质监员 x

    P1314 聪明的质监员(至于为什么选择这个题目,可能是我觉得比较好玩呗) 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自 ...

  2. SQL create file遇到操作系统错误5拒绝访问

    当在sql server 2014创建一个数据库时出现错误:尝试打开或创建物理文件 'G:\Test.mdf' 时,CREATE FILE 遇到操作系统错误 5(拒绝访问). 原因及解决方法如下: 这 ...

  3. SQL语法——Join详解

    一.INNER JOIN 用法: select column_name(s) from table 1 INNER JOIN table 2 ON table 1.column_name=table ...

  4. 转载:JIRA_7.13(破解)安装教程

    参考:https://blog.csdn.net/weixin_38229356/article/details/84875205 参考2:https://www.codercto.com/a/399 ...

  5. sqli-labs(36)

    0X01发现又是‘’被过滤了 ?id=%df%%20and%=%23 错误 ?id=1%df%27%20and%201=1%23 正确   存在注入 0X01爆数据库 ?id=-%df%%20unio ...

  6. htonl(),htons(),ntohl(),ntons()--大小端模式转换函数

    不同机器内部对变量的字节存储顺序不同,有的采用大端模式(big-endian),有的采用小端模式(little-endian). 大端模式是指高字节数据存放在低地址处,低字节数据放在高地址处. 小端模 ...

  7. node.js npm 操作 模块化开发 cnpm镜像安装

    模块(包) 传统引入 js 的缺点 整个网页,我们写了一个 js 文件,所有的特效都在里面 耦合度太高,代码之间关联性太强,不便于后期维护 变量容易 全局污染 如果将 复杂的 js 文件,拆成多个功能 ...

  8. JS 替换所有的空格

    在JS中替换掉输入框内的空格,是在处理表单需求的时候极为常用的一项操作,以防止用户的操作习惯引起数据异常,保证传参的安全性. NO.1 name.replace(" "," ...

  9. Vue创建全局组件

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 搭建第一个netty程序

    来自action In netty 自己修改一点点 主要依赖 <dependencies> <dependency> <groupId>io.netty</g ...