UOJ426. 【集训队作业2018】石像 [状压DP,min_25筛]
思路
(以下思路是口胡,但正确性大概没有问题。)
刚学min_25筛的时候被麦老大劝来做这题?
结果发现这题是个垃圾二合一??
简单推一下式子可以得到答案就是这个:
\]
其中\(f(n)=(\sigma_0(n^3))^3\)。
通过手玩可以得到\((f*\mu)(p^c)=81c^2-27c+9,c\ne 0\),于是可以min_25求前缀和。
现在问题转化为:对于一个给定的上界,求满足限制的\(\{a_n\}\)有几个。
先缩点。考虑枚举\(\{a_n\}\)中不同的\(a\)有几个,然后状压DP:设\(f_S\)表示从小到大放,当前已经放了\(S\)的方案数。我们做\(n\)次转移,做完\(i\)次之后\(f_U\)就是至多\(i\)个不同的\(a\)的方案数。
转移可以枚举子集,但显然会TLE。考虑一个点能被放上去当且仅当小于它的全都放上去了,于是有一个根据拓扑序转移的方法:
f[0]=1;
rep(i,1,n)
{
repd(j,n,1)
{
int s=((1<<n)-1)^mp[j]^(1<<j-1);
for(int k=s; ; k=(k-1)&s)
{
f[k^mp[j]^(1<<j-1)]+=f[k^mp[j]];
if(!k) break;
}
}
cur[i]=f[(1<<n)-1];
}
(麦老大nb!)
其中\(n\)的拓扑序最大,\(mp_j\)记录\(j\)直接连向的点。
最后对\(cur\)二项式反演一下就没了。
代码
咕咕咕
UOJ426. 【集训队作业2018】石像 [状压DP,min_25筛]的更多相关文章
- 【UOJ448】【集训队作业2018】人类的本质 min_25筛
题目大意 给你 \(n,m\),求 \[ \sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,x_1),\gcd(i, ...
- 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...
- [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...
- 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp
2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp [P ...
- [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP
题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...
- 【XSY3042】石像 拓扑排序 状压DP 洲阁筛
题目大意 有 \(n\) 个整数 \(a_1,a_2,\ldots,a_n\),每个数的范围是 \([1,m]\).还有 \(k\) 个限制,每个限制 \(x_i,y_i\) 表示 \(a_{x_i} ...
- [BZOJ5248] 2018九省联考 D1T1 一双木棋 | 博弈论 状压DP
题面 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可以落子 ...
- 2018.10.27 洛谷P2915奶牛混合起来Mixed Up Cows(状压dp)
传送门 状压dp入门题. 按照题意建一个图. 要求的就是合法的链的总数. 直接f[i][j]f[i][j]f[i][j]表示当前状态为jjj,下一位要跟iii连起来的方案数. 然后从没被选并且跟iii ...
- 2018.10.24 bzoj2064: 分裂(状压dp)
传送门 状压dp好题. 考虑对于两个给出的集合. 如果没有两个元素和相等的子集,那么只能全部拼起来之后再拆开,一共需要n1+n2−2n1+n2-2n1+n2−2. 如果有呢? 那么对于没有的就是子问题 ...
随机推荐
- 基于CentOS6.5的Dubbo及Zookeeper配置
基于CentOS的Dubbo及Zookeeper配置 需要提前准备好的资料: 1.首先配置java环境 步骤: 将jdk的包上传至centos服务器的/opt目录下,并且解压 tar -zxvf jd ...
- C#使用Selenium
介绍: Selenium 是一个用于Web应用程序测试的工具.Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.支持的浏览器包括IE(7, 8, 9, 10, 11),Mozilla ...
- open_vPGPv
加密 // create an instance of the library PGPLib pgp = new PGPLib(); // Import the main company public ...
- js json数据保存到本地
转自:https://www.cnblogs.com/gamedaybyday/p/9906542.html 使用HTML5来实现本地文件读取和写入 (FileReader读取json文件,File ...
- Wireless support
Wireless support 参考: https://www.rhyous.com/2010/12/03/freebsd-wireless-configuring-a-wireless-inter ...
- Install Gnome desktop
Install Gnome desktop http://www.dinggd.com/index.php/freebsd-8-0-rc1-gnome%E6%A1%8C%E9%9D%A2%E5%AE% ...
- D1-JavaScript
下面的代码,我想要打印出hey jack,结果却打印出hey rose,为什么? function greet(person) { if (person == {name: 'jack'}) { co ...
- p6.BTC-挖矿难度
挖矿就是不断调整nouce和header中其他可变字段,使得整个block header 的hash值小于等于target,target越小,挖矿难度越大. 出块时间设置为了10分钟,可以尽可能避免同 ...
- Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...
- Flink原理(五)——容错机制
本文是博主阅读Flink官方文档以及<Flink基础教程>后结合自己理解所写,若有表达有误的地方欢迎大伙留言指出. 1. 前言 流式计算分为有状态和无状态两种情况,所谓状态就是计算过程中 ...