聚类算法:K-means 算法(k均值算法)
k-means算法:
聚类中心的向量值可任意设定,例如可选开始的$K$个模式样本的向量值作为初始聚类中心。
\[
D_j (k) = \min \{ \left\| {x - z_i (k)} \right\|,i = 1,2, \cdots K\}
\]
则$x\in S_j(k)$,其中$k$为迭代运算的次序号,第一次迭代$k=1$,$S_j$表示第$j$个聚类,其聚类中心为$z_j$。
第三步:计算各个聚类中心的新的向量值,$z_j(k+1),j=1,2,\cdots,K$,求各聚类域中所包含样本的均值向量:
\[
\begin{array}{*{20}c}
{z_j (k + 1) = \frac{1}{{N_j }}\sum\limits_{x \in S_j (k)} x ,} & {j = 1,2, \cdots ,K} \\
\end{array},
\]
其中$N_j$为第$j$个聚类域$S_j$中所包含的样本个数。以均值向量作为新的聚类中心,可使如下聚类准则函数最小:
\[
\begin{array}{*{20}c}
{J_j = \sum\limits_{x \in S_j (k)} {\left\| {x - z_j (k + 1)} \right\|^2 } ,} & {j = 1,2, \cdots ,K} \\
\end{array}
\]
在这一步中要分别计算$K$个聚类中的样本均值向量,所以称之为$K$-均值算法。
第四步:若$z_j(k+1)\neq z_j(k),j=1,2,\cdots,K$,则返回第二步,将模式样本逐个重新分类,重复迭代运算; 若$z_j(k+1)=z_j(k),j=1,2,\cdots,k$,则算法收敛,计算结束。
K-均值分类算法实例

第一步:取$K=2$,并选
$z_1(1)=x_1=(0 0)^T, z_2(1)=x_2=(1 0)^T$
第二步:因$||x_1-z_1(1)||<||x_1-z_2(1)||$,故$x_1\in S_1(1)$
因$||x_2-z_1(1)||>||x_2-z_2(1)||$,故$x_2\in S_2(1)$
因$||x_3-z_1(1)||<||x_3-z_2(1)||$,故$x_3\in S_1(1)$
……
得到:
S1(1)={x1, x3}, S2(1)={x2, x4, x5, …, x20}
第三步:计算新的聚类中心


第四步:因$z_j(2)\neq z_j(1),j=1,2$,返回第二步;
第二步(返回1):由新的聚类中心,得到:


因此
$S_1(2)=\{x_1, x_2,\cdots, x_8\}$
$S_2(2)=\{x_9, x_{10}, \cdots, x_{20}\}$
第三步(返回1):计算聚类中心


第四步(返回1):因$z_j(3)\neq z_j(2),j=1,2$,返回第二步;
第二步(返回2):分类结果与前一次迭代的结果相同,即$S_1(4)=S_1(3),S_2(4)= S_2(3)$;
第三步(返回2):聚类中心与前一次迭代的结果相同;
第四步(返回2):因$z_j(4)=z_j(3),j=1,2$,算法收敛,得到最终的聚类中心。
,
聚类算法:K-means 算法(k均值算法)的更多相关文章
- 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用
1.用python实现K均值算法 import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) ...
- 机器学习之K均值算法(K-means)聚类
K均值算法(K-means)聚类 [关键词]K个种子,均值 一.K-means算法原理 聚类的概念:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中. K-Means算法是一种聚类分析 ...
- 聚类--K均值算法
import numpy as np from sklearn.datasets import load_iris iris = load_iris() x = iris.data[:,1] y = ...
- 第八次作业:聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用
import numpy as np x = np.random.randint(1,100,[20,1]) y = np.zeros(20) k = 3 def initcenter(x,k): r ...
- 一句话总结K均值算法
一句话总结K均值算法 核心:把样本分配到离它最近的类中心所属的类,类中心由属于这个类的所有样本确定. k均值算法是一种无监督的聚类算法.算法将每个样本分配到离它最近的那个类中心所代表的类,而类中心的确 ...
- 【机器学习】K均值算法(II)
k聚类算法中如何选择初始化聚类中心所在的位置. 在选择聚类中心时候,如果选择初始化位置不合适,可能不能得出我们想要的局部最优解. 而是会出现一下情况: 为了解决这个问题,我们通常的做法是: 我们选取K ...
- 【机器学习】K均值算法(I)
K均值算法是一类非监督学习类,其可以通过观察样本的离散性来对样本进行分类. 例如,在对如下图所示的样本中进行聚类,则执行如下步骤 1:随机选取3个点作为聚类中心. 2:簇分配:遍历所有样本然后依据每个 ...
- Bisecting KMeans (二分K均值)算法讲解及实现
算法原理 由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选 ...
- KMeans (K均值)算法讲解及实现
算法原理 KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标 ...
随机推荐
- 嵌套结构使用:struc1-struc2-XXX
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- catkin_make broken after intalling python 3.5 with anaconda
"No module named catkin_pkg.package" on catkin_make w/ Indigo I have the problem after ana ...
- iOS - Block 代码块
1.Block Block 是一段预先准备好的代码,可以在需要的时候执行,可以当作参数传递.Block 可以作为函数参数或者函数的返回值,而其本身又可以带输入参数或返回值.Block 是 C 语言的, ...
- iOS - CoreMotion
前言 NS_CLASS_AVAILABLE(NA,4_0) @interface CMMotionManager : NSObject @available(iOS 4.0, *) public cl ...
- Ubuntu Server14.04 32位安装odoo8.0简单方法
一.wget -O - https://nightly.odoo.com/odoo.key | apt-key add - 二.echo "deb http://nightly.odoo.c ...
- linux中脚本的一些小知识的积累
对于变量的问题: 对变量赋值,a="hello world",现在打印变量a的内容:echo $a. 对于${}的使用:如$aall,我们想要$a,这是,就可以${a}all了. ...
- LTIB常用命令2
LTIB 编译配置选项 根据说明文档,ltib 可以通过以下的命令配置: * <verbatim># ./ltib</verbatim> 安装后第一次运行,采 ...
- commonJS — 自定义事件处理(for CustomEvent)
for CustomEvent github: https://github.com/laixiangran/commonJS/blob/master/src/forCustomEvent.js 代码 ...
- association ,collection
mybatis 出现这个错误Error creating document instance. Cause: org.xml.sax.SAXParseException; lineNumber: 2 ...
- webdriver hangs when get or click
Same times the webdriver hangs when get url or click some link, webdriver executing (get or click) ...