链接

也是矩阵经典题目  二分递归求解

a+a^2+a^3+..+a^(k/2)+a^(k/2+1)+...+a^k = a+a^2+..+a^k/2+a^k/2(a^1+a^2+..+a^k/2)(偶数)

a+a^2+a^3+..+a^(k/2)+a^(k/2+1)+...+a^k = a+a^2+..+a^k/2+a^k/2(a^1+a^2+..+a^k/2)+a^k。 奇数

 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 1e9
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
struct Mat
{
int mat[][];
};
int n,mod;
Mat operator + (Mat a,Mat b)
{
Mat c;
int i,j;
for(i = ; i < n ;i++)
for(j = ;j < n ;j++)
{
if(a.mat[i][j]+b.mat[i][j]>mod)
c.mat[i][j] = (a.mat[i][j]+b.mat[i][j])%mod;
else
c.mat[i][j] = a.mat[i][j]+b.mat[i][j];
}
return c;
}
Mat operator * (Mat a,Mat b)
{
Mat c;
memset(c.mat,,sizeof(c.mat));
int i,j,k;
for(k = ; k < n ; k++)
{
for(i = ; i < n ;i++)
{
if(a.mat[i][k]==) continue;
for(j = ;j < n ;j++)
{
if(b.mat[k][j]==) continue;
c.mat[i][j] = (c.mat[i][j]+a.mat[i][k]*b.mat[k][j])%mod;
}
}
}
return c;
}
Mat operator ^(Mat a,int k)
{
Mat c;
int i,j;
for(i = ; i < n ;i++)
for(j = ; j < n ;j++)
c.mat[i][j] = (i==j);
for(; k ;k >>= )
{
if(k&) c = c*a;
a = a*a;
}
return c;
}
Mat solve(Mat x,int k)
{
if(k==) return x;
Mat c ;
c = x^k;
Mat a = solve(x,k/);
Mat b = x^(k/);
if(k&) c = a+b*a+c;
else c = a+b*a;
return c;
}
int main()
{
int t;
int i,j;
while(scanf("%d%d%d",&n,&t,&mod)!=EOF)
{
Mat x;
for(i = ; i < n ;i++)
for(j = ; j < n ;j++)
scanf("%d",&x.mat[i][j]);
x = solve(x,t);
for(i = ; i < n ;i++)
{
for(j = ; j < n-; j++)
printf("%d ",x.mat[i][j]%mod);
printf("%d\n",x.mat[i][n-]%mod);
}
}
return ;
}

poj3233Matrix Power Series的更多相关文章

  1. POJ3233Matrix Power Series(十大矩阵问题之三 + 二分+矩阵快速幂)

    http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total ...

  2. poj3233Matrix Power Series(矩阵乘法)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 23187   Accepted: ...

  3. POJ3233Matrix Power Series(矩阵快速幂)

    题意 题目链接 给出$n \times n$的矩阵$A$,求$\sum_{i = 1}^k A^i $,每个元素对$m$取模 Sol 考虑直接分治 当$k$为奇数时 $\sum_{i = 1}^k A ...

  4. C++-POJ3233-Matrix Power Series[矩阵乘法][快速幂]

    构造矩阵 #include <cstdio> ; struct Matrix{int a[MAXN][MAXN];}O,I;int N; ;i<MAXN;i++);j<MAXN ...

  5. POJ 3233Matrix Power Series

    妈妈呀....这简直是目前死得最惨的一次. 贴题目: http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Mem ...

  6. MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  7. 线性代数(矩阵乘法):POJ 3233 Matrix Power Series

    Matrix Power Series   Description Given a n × n matrix A and a positive integer k, find the sum S = ...

  8. C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速

    Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: ...

  9. POJ 3233 Matrix Power Series(二分等比求和)

    Matrix Power Series [题目链接]Matrix Power Series [题目类型]二分等比求和 &题解: 这题我原来用vector写的,总是超时,不知道为什么,之后就改用 ...

随机推荐

  1. Java基础实例

    打印等腰三角形代码 public class ForForTest{ public static void main(String []args){ for(int x=0;x<5;x++){ ...

  2. IIS 配置 FTP 网站 H5 音频标签自定义样式修改以及添加播放控制事件

    IIS 配置 FTP 网站   在 服务器管理器 的 Web服务器IIS 上安装 FTP 服务 在 IIS管理器 添加FTP网站 配置防火墙规则 说明:服务器环境是Windows Server 200 ...

  3. aix用户登录次数受限问题(3004-300 输入了无效的登录名或password)

    当登录AIX系统.username或password不对以至于多次登录,超过系统设定的次数,怎样解锁: 1.用root用户登录系统 2.chuser unsuccessful_login_count= ...

  4. c中的变量

    1 变量类型 1.1 static global or static .data/.bss 1.2 automic stack,its relevant to os kernel and compil ...

  5. StyleBook皮肤控件的使用

    StyleBook 介绍及VICEN对皮肤控件的一些看法可以说StyleBook的出现,简直是皮肤控件厂商的噩梦,因为用户可以通过StyleBook快速切换控件样式,而不需要在去购买第三方换肤控件,对 ...

  6. 前端预览图片和H5canvas压缩图片上传

    思路是将图片抽样显示在canvas上,然后用通过canvas.toDataURL方法得到base64字符串来实现压缩. 1.base64转二进制文件 /** * dataURL to blob, re ...

  7. js常用操作事件

    触发描述 方法 用法 点击 onclick="method();"   变换 onchange="testChange();"   双击 ondblclick= ...

  8. IE、W3C两种CSS盒子模型

    利用CSS来布局页面布局DIV有点逻辑性!重点理解盒子模型,标准流和非标准流的区别,还有定位原理!把这3个攻破了,就非常简单了!多实践多参考!最后就是兼容问题了,在实践中自然就有经验了!这些兼容技巧都 ...

  9. BZOJ1143:祭祀river(二分图求有向图的最大点独立集)

    在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都 会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河道连接着 ...

  10. UVa 1471 Defense Lines (二分+set优化)

    题意:给定一个序列,然后让你删除一段连续的序列,使得剩下的序列中连续递增子序列最长. 析:如果暴力枚举那么时间复杂度肯定受不了,我们可以先进行预处理,f[i] 表示以 i 结尾的连续最长序列,g[i] ...