Hdoj 2454.Degree Sequence of Graph G 题解
Problem Description
Wang Haiyang is a strong and optimistic Chinese youngster. Although born and brought up in the northern inland city Harbin, he has deep love and yearns for the boundless oceans. After graduation, he came to a coastal city and got a job in a marine transportation company. There, he held a position as a navigator in a freighter and began his new life.
The cargo vessel, Wang Haiyang worked on, sails among 6 ports between which exist 9 routes. At the first sight of his navigation chart, the 6 ports and 9 routes on it reminded him of Graph Theory that he studied in class at university. In the way that Leonhard Euler solved The Seven Bridges of Knoigsberg, Wang Haiyang regarded the navigation chart as a graph of Graph Theory. He considered the 6 ports as 6 nodes and 9 routes as 9 edges of the graph. The graph is illustrated as below.

According to Graph Theory, the number of edges related to a node is defined as Degree number of this node.
Wang Haiyang looked at the graph and thought, If arranged, the Degree numbers of all nodes of graph G can form such a sequence: 4, 4, 3,3,2,2, which is called the degree sequence of the graph. Of course, the degree sequence of any simple graph (according to Graph Theory, a graph without any parallel edge or ring is a simple graph) is a non-negative integer sequence?
Wang Haiyang is a thoughtful person and tends to think deeply over any scientific problem that grabs his interest. So as usual, he also gave this problem further thought, As we know, any a simple graph always corresponds with a non-negative integer sequence. But whether a non-negative integer sequence always corresponds with the degree sequence of a simple graph? That is, if given a non-negative integer sequence, are we sure that we can draw a simple graph according to it.?
Let's put forward such a definition: provided that a non-negative integer sequence is the degree sequence of a graph without any parallel edge or ring, that is, a simple graph, the sequence is draw-possible, otherwise, non-draw-possible. Now the problem faced with Wang Haiyang is how to test whether a non-negative integer sequence is draw-possible or not. Since Wang Haiyang hasn't studied Algorithm Design course, it is difficult for him to solve such a problem. Can you help him?
Input
The first line of input contains an integer T, indicates the number of test cases. In each case, there are n+1 numbers; first is an integer n (n<1000), which indicates there are n integers in the sequence; then follow n integers, which indicate the numbers of the degree sequence.
Output
For each case, the answer should be "yes"or "no" indicating this case is "draw-possible" or "non-draw-possible"
Sample Input
2
6 4 4 3 3 2 2
4 2 1 1 1
Sample Output
yes
no
Source
思路
根据Havel-Hakimi定理 :
- 非递增排序当前数列\(d[n]\)
- 让\(k=d[1]\),将k从数组中移除
- 从第2个开始的前K个元素都-1
- 不断重复上述过程直到序列出现负数=不可图,全都为0=可图
详细见代码注释
代码
#include<bits/stdc++.h>
using namespace std;
int a[1001];
int main()
{
int t;
cin >> t;
while(t--)
{
int n;
cin >> n;
for(int i=1;i<=n;i++)
cin >> a[i];
sort(a+1,a+n+1,[](int x,int y)->bool{ return x>y;});
bool flag = false;
while(true)
{
int k = a[1];
if(k < 0 || a[n] < 0)//如果之前出现了负数那么排序后最后一个肯定小于0不符合
{
flag = false;
break;
}else
if(k==0)
{
flag = true;
break;
}else
{
for(int i=2;k>0;i++)//从第2个起接下来k个元素都-1
{
a[i]--;
if(a[i] < 0)
{
flag = false;
break;
}
k--;
}
a[1] = 0;
sort(a+1,a+n+1,[](int x,int y)->bool{ return x>y;});
}
if(flag) break;
}
if(flag)
cout << "yes" << endl;
else
cout << "no" << endl;
}
return 0;
}
Hdoj 2454.Degree Sequence of Graph G 题解的更多相关文章
- HDU 2454 Degree Sequence of Graph G(Havel定理 推断一个简单图的存在)
主题链接:pid=2454">http://acm.hdu.edu.cn/showproblem.php?pid=2454 Problem Description Wang Haiya ...
- hdu 2454 Degree Sequence of Graph G (推断简单图)
///已知各点的度,推断是否为一个简单图 #include<stdio.h> #include<algorithm> #include<string.h> usin ...
- HDU 2454"Degree Sequence of Graph G"(度序列可图性判断)
传送门 参考资料: [1]:图论-度序列可图性判断(Havel-Hakimi定理) •题意 给你 n 个非负整数列,判断这个序列是否为可简单图化的: •知识支持 握手定理:在任何无向图中,所有顶点的度 ...
- HDU 2454 Degree Sequence of Graph G——可简单图化&&Heavel定理
题意 给你一个度序列,问能否构成一个简单图. 分析 对于可图化,只要满足度数之和是偶数,即满足握手定理. 对于可简单图化,就是Heavel定理了. Heavel定理:把度序列排成不增序,即 $deg[ ...
- hdu 2454 Degree Sequence of Graph G(可简单图化判定)
传送门 •Havel-Hakimi定理: 给定一个非负整数序列{d1,d2,...dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化. 进一步,若图为简单图,则称此序列可简单图 ...
- 【Havel 定理】Degree Sequence of Graph G
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debug ...
- POJ 2553 The Bottom of Graph 强连通图题解
Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...
- Rabin_Karp(hash) HDOJ 1711 Number Sequence
题目传送门 /* Rabin_Karp:虽说用KMP更好,但是RK算法好理解.简单说一下RK算法的原理:首先把模式串的哈希值算出来, 在文本串里不断更新模式串的长度的哈希值,若相等,则找到了,否则整个 ...
- 洛谷P3104 Counting Friends G 题解
题目 [USACO14MAR]Counting Friends G 题解 这道题我们可以将 \((n+1)\) 个边依次去掉,然后分别判断去掉后是否能满足.注意到一点, \(n\) 个奶牛的朋友之和必 ...
随机推荐
- Windows之文件夹中打开PowerShell
Windows之文件夹中打开PowerShell 为了解决Windows中在某个路径下使用PowerShell,而不是使用传统的cd命令切换过去,具体做法如下: 方法一 打开文件夹 在文件夹的内容区按 ...
- Django之用户上传文件的参数配置
Django之用户上传文件的参数配置 models.py文件 class Xxoo(models.Model): title = models.CharField(max_length=128) # ...
- mysql常用命令行操作(二):表和库的操作、引擎、聚合函数
一.查看.创建.删除数据库 create database library default character set utf8 collate utf8_general_ci; # 创建数据库并设置 ...
- rest framwork 小试身手
models.py from django.db import models class Course(models.Model): """ 课程表 "&quo ...
- C#复习笔记(1)--C#开发的进化史
前言:陆续使用C#已经有一年半的时间.中间做过一些应用,现在为了有更高的提升,决定重新看一遍C# in depth,并总结一些笔记. 一.从简单的数据类型开始 上面是C#1到C#4中的一部分演变历程. ...
- Oracle通过ROWID删除表中重复记录
-- 1 通过ROWID删除T1表里重复的记录 SELECT ROWID,A,B--DELETE FROM T1WHERE ROWID IN ( SELECT RD FROM ( ...
- C++类的内存结构
摘自Jerry19880126 简单类 class Base { int a; int b; public: void CommonFunction(); }; 简单类继承 class Derived ...
- CMake--List用法
list(LENGTH <list><output variable>) list(GET <list> <elementindex> [<ele ...
- 【Java基础】求出1-100之间偶数和
结果:
- docker开启加速(第三篇)
前言: docker的镜像仓库在国外,下载会很慢,启用阿里云加速. 第一步:cd /etc/docker目录下,打开daemon.json 第二步:修改daemon.json文件,添加阿里云加速: ...