[Luogu4294]

题解 : 斯坦纳树

\(dp[i][j]\) 表示以\(i\)号节点为根,当前状态为\(j\)(与\(i\)连通的点为\(1\))

当根\(i\)不改变时状态转移方程是:

\(dp[i][j] = \min_{s \in j}\{dp[i][s] + dp[i][\complement_js] - val[i]\}\)

当根改变时,要求\(i,k\)相邻 :

\(dp[i][j] = \min\{dp[k][j] + val[i]\}\)

记录\(pre[i][now]\)为由哪个状态转移而来,便于输出方案

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
typedef long long LL;
typedef pair<int,int> pii;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} int f[101][1111],a[101],d[4][2]={1,0,0,1,0,-1,-1,0};
bool inq[101],ans[11][11];
pii pre[101][1111];
queue <int> q;
int n,m,K,rt; inline void SPFA(int now){
while(!q.empty()){
int u=q.front();q.pop();inq[u]=0;
for(int i=0;i<4;i++){
int x=u/m,y=u%m,tx=x+d[i][0],ty=y+d[i][1],v=tx*m+ty;
if(tx<0||tx>=n||ty<0||ty>=m) continue;
if(f[u][now]+a[v]<f[v][now]){
f[v][now]=f[u][now]+a[v];
if(!inq[v]) inq[v]=1,q.push(v);
pre[v][now]=pii(u,now);//状态为now定义为与根相连的点的状态,只有相邻的才能转移
}
}
}
} inline void dfs(int x,int y,int now){
int u=x*m+y;
if(!pre[u][now].second) return;
ans[x][y]=1;
if(pre[u][now].first==u) dfs(x,y,now^pre[u][now].second);//如果是由自己更新过来,就要往两个方向回溯
dfs(pre[u][now].first/m,pre[u][now].first%m,pre[u][now].second);//否则就只往一个方向
} int main(){
n=read(),m=read();
memset(f,0x3f,sizeof f);
for(int i=0,now=0;i<n;i++)
for(int j=0;j<m;j++,now++){
a[now]=read();
if(!a[now]) f[now][1<<(K++)]=0,rt=now;
}
for(int now=1;now<(1<<K);now++){
for(int i=0;i<n*m;i++){
for(int s=now&(now-1);s;s=(s-1)&now)
if(f[i][s]+f[i][now^s]-a[i]<f[i][now]){
f[i][now]=f[i][s]+f[i][now^s]-a[i];//用自己的信息更新
pre[i][now]=pii(i,s);
}
if(f[i][now]<f[0][0])
q.push(i),inq[i]=1;
}
SPFA(now);//更新状态为now的全部的值
}
printf("%d\n",f[rt][(1<<K)-1]);
dfs(rt/m,rt%m,(1<<K)-1);
for(int i=0,now=0;i<n;i++){
for(int j=0;j<m;j++,now++){
if(!a[now]) putchar('x');
else putchar(ans[i][j]?'o':'_');
}
putchar('\n');
}
}

[WC2008]游览计划(斯坦纳树)的更多相关文章

  1. 【BZOJ2595】[Wc2008]游览计划 斯坦纳树

    [BZOJ2595][Wc2008]游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为 ...

  2. Luogu 4294 [WC2008]游览计划 | 斯坦纳树

    题目链接 Luogu 4294 (我做这道题的时候BZOJ全站的SPJ都炸了 提交秒WA 幸好有洛谷) 题解 这道题是[斯坦纳树]的经典例题.斯坦纳树是这样一类问题:带边权无向图上有几个(一般约10个 ...

  3. bzoj2595: [Wc2008]游览计划 斯坦纳树

    斯坦纳树是在一个图中选取某些特定点使其联通(可以选取额外的点),要求花费最小,最小生成树是斯坦纳树的一种特殊情况 我们用dp[i][j]来表示以i为根,和j状态是否和i联通,那么有 转移方程: dp[ ...

  4. BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

    Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2030  Solved: 986[Submit][Status][ ...

  5. BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树

    [题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...

  6. bzoj2595 [Wc2008]游览计划——斯坦纳树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2595 今天刚学了斯坦纳树,还不太会,写一道题练习一下: 参考了博客:http://www.c ...

  7. P4294 [WC2008]游览计划 (斯坦纳树)

    题目链接 差不多是斯坦纳树裸题,不过边权化成了点权,这样在合并两棵子树时需要去掉根结点的权值,防止重复. 题目还要求输出解,只要在转移时记录下路径,然后dfs一遍就好了. #include<bi ...

  8. 洛谷4294 [WC2008]游览计划——斯坦纳树

    题目:https://www.luogu.org/problemnew/show/P4294 大概是状压.两种转移,一个是以同一个点为中心,S由自己的子集拼起来:一个是S相同.中心不同的同层转移. 注 ...

  9. 【BZOJ-2595】游览计划 斯坦纳树

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1518  Solved: 7 ...

  10. [WC2008]游览计划 解题报告

    [WC2008]游览计划 斯坦纳树板子题,其实就是状压dp 令\(dp_{i,s}\)表示任意点\(i\)联通关键点集合\(s\)的最小代价 然后有转移 \[ dp_{i,S}=\min_{T\in ...

随机推荐

  1. 详解servlet的url-pattern匹配规则.RP

    首先需要明确几容易混淆的规则: servlet容器中的匹配规则既不是简单的通配,也不是正则表达式,而是特定的规则.所以不要用通配符或者正则表达式的匹配规则来看待servlet的url-pattern. ...

  2. Codeforces 427E Police Patrol

    找中间的数,然后从两头取. #include<stdio.h> ; int pos[MAX]; int main() { int n,m,tmp; int i; int pol; long ...

  3. easyui-dialog 弹窗

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  4. 升级Ubuntu 12.04下的gcc到4.7

    我们知道C++11标准开始支持类内初始化(in-class initializer),Qt creator编译出现error,不支持这个特性,原因在于,Ubuntu12.04默认的是使用gcc4.6, ...

  5. Java web 中的HttpServletRequest对象

    一.HttpServletRequest介绍 HttpServletRequest对象代表客户端的请求,当客户端通过HTTP协议访问服务器时,HTTP请求头中的所有信息都封装在这个对象中,通过这个对象 ...

  6. MongoDB整理笔记の高级查询

    1.条件操作符 <, <=, >, >= 这个操作符就不用多解释了,最常用也是最简单的    db.collection.find({ "field" : ...

  7. exe文件停止运行的情况

    1.程序问题. 2.服务器问题. 3.内存占用问题. 一般情况下,关掉程序,重新打开就可以. 上述情况不行,则关掉电脑,重启. 再不行,Ctr + Alt + Del关掉程序的进程. 不行, Win ...

  8. 使用Oracle(SQL Plus)

    error: connection as sys should be as SYSDBA or SYSOPER 用户名 :sys 密码:  自己设定的database:ORCLconnect as : ...

  9. 服务器控件数据回发实现IPostBackDataHandler需注意的

    我写的服务器控件(未完,模型如此) using System; using System.Collections.Generic; using System.Collections.Specializ ...

  10. vs2017安装后自动应用许可证

    Vs2017专业版 "C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\Common7\IDE\StorePI ...