HDU 3691 Nubulsa Expo(全局最小割)
Problem Description
You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa is an undeveloped country and it is threatened by the rising of sea level. Scientists predict that Nubulsa will disappear by the year of 2012. Nubulsa government wants to host the 2011 Expo in their country so that even in the future, all the people in the world will remember that there was a country named “Nubulsa”.
As you know, the Expo garden is made up of many museums of different countries. In the Expo garden, there are a lot of bi-directional roads connecting those museums, and all museums are directly or indirectly connected with others. Each road has a tourist capacity which means the maximum number of people who can pass the road per second.
Because Nubulsa is not a rich country and the ticket checking machine is very expensive, the government decides that there must be only one entrance and one exit. The president has already chosen a museum as the entrance of the whole Expo garden, and it’s the Expo chief directory Wuzula’s job to choose a museum as the exit.
Wuzula has been to the Shanghai Expo, and he was frightened by the tremendous “people mountain people sea” there. He wants to control the number of people in his Expo garden. So Wuzula wants to find a suitable museum as the exit so that the “max tourists flow” of the Expo garden is the minimum. If the “max tourist flow” is W, it means that when the Expo garden comes to “stable status”, the number of tourists who enter the entrance per second is at most W. When the Expo garden is in “stable status”, it means that the number of people in the Expo garden remains unchanged.
Because there are only some posters in every museum, so Wuzula assume that all tourists just keep walking and even when they come to a museum, they just walk through, never stay.
Input
There are several test cases, and the input ends with a line of “0 0 0”.
For each test case:
The first line contains three integers N, M and S, representing the number of the museums, the number of roads and the No. of the museum which is chosen as the entrance (all museums are numbered from 1 to N). For example, 5 5 1 means that there are 5 museums and 5 roads connecting them, and the No. 1 museum is the entrance.
The next M lines describe the roads. Each line contains three integers X, Y and K, representing the road connects museum X with museum Y directly and its tourist capacity is K.
Please note:
1<N<=300, 0<M<=50000, 0<S,X,Y<=N, 0<K<=1000000
Output
For each test case, print a line with only an integer W, representing the “max tourist flow” of the Expo garden if Wuzula makes the right choice.
Sample Input
5 5 1
1 2 5
2 4 6
1 3 7
3 4 3
5 1 10
0 0 0
Sample Output
8
题意
N个博物馆,M条路,S为入口,要求你找个出口T,使得从S-T的人流量总和最小,就是S-T的最大流最小,输出最大流
题解
由于最大流=最小割,根据全局最小割可知,两个集合a和b,无论S在哪个集合,都有另1个集合的点满足,所以S根本不用考虑
所以题目就变成求全局最小割
代码
#include<bits/stdc++.h>
using namespace std; const int maxn=;
const int INF=0x3f3f3f3f; int G[maxn][maxn],wage[maxn],v[maxn];
bool vis[maxn],in[maxn];
int n,m; int Stoer_wagner()
{
int ans=INF;
for(int i=;i<=n;i++)v[i]=i;
while(n>)
{
memset(vis,,sizeof vis);
memset(wage,,sizeof wage);
int k,pre=;
vis[v[pre]]=true;
for(int i=;i<=n;i++)
{
k=-;
for(int j=;j<=n;j++)
if(!vis[v[j]])
{
wage[v[j]]+=G[v[pre]][v[j]];
if(k==-||wage[v[k]]<wage[v[j]])k=j;
}
vis[v[k]]=true;
if(i==n-)
{
ans=min(ans,wage[v[k]]);
if(ans==)return ans;
for(int j=;j<=n;j++)
{
G[v[pre]][v[j]]+=G[v[j]][v[k]];
G[v[j]][v[pre]]+=G[v[j]][v[k]];
}
v[k]=v[n--];
}
pre=k;
}
}
return ans;
}
int main()
{
while(scanf("%d%d%*d",&n,&m)!=EOF,n||m)
{
memset(G,,sizeof G);
for(int i=,u,v,w;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
G[u][v]+=w;
G[v][u]+=w;
}
printf("%d\n",Stoer_wagner());
}
return ;
}
HDU 3691 Nubulsa Expo(全局最小割)的更多相关文章
- UVALive 5099 Nubulsa Expo 全局最小割问题
B - Nubulsa Expo Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit S ...
- HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)
Problem Description You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa ...
- UVALive 5099 Nubulsa Expo 全球最小割 非网络流量 n^3
主题链接:点击打开链接 意甲冠军: 给定n个点m条无向边 源点S 以下m行给出无向边以及边的容量. 问: 找一个汇点,使得图的最大流最小. 输出最小的流量. 思路: 最大流=最小割. 所以题意就是找全 ...
- HDU 3691 Nubulsa Expo
无向图的最小割.套了个模板. #include<iostream> #include<cstdio> #include<cstring> #include<a ...
- 全局最小割StoerWagner算法详解
前言 StoerWagner算法是一个找出无向图全局最小割的算法,本文需要读者有一定的图论基础. 本文大部分内容与词汇来自参考文献(英文,需***),用兴趣的可以去读一下文献. 概念 无向图的割:有无 ...
- UVALive 5099 Nubulsa Expo(全局最小割)
题面 vjudge传送门 题解 论文题 见2016绍兴一中王文涛国家队候选队员论文<浅谈无向图最小割问题的一些算法及应用>4节 全局最小割 板题 CODE 暴力O(n3)O(n^3)O(n ...
- HDU 6081 度度熊的王国战略(全局最小割堆优化)
Problem Description度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族.哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士.所以这一场战争,将会十分艰难.为了更好的进攻 ...
- HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)
Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...
- ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)
题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...
随机推荐
- JeeWx捷微3.1小程序版本发布,支持微信公众号,微信企业号,支付窗——JAVA版开源微信管家
支持小程序,JeeWx捷微3.1小程序版本发布^_^ JeeWx捷微V3.1——多触点小程序版本管理平台(支持微信公众号,微信企业号,支付窗) JeeWx捷微V3.1.0版本紧跟微信小程序更新,在 ...
- python 阿狸的进阶之路(6)
常用模块 json # 序列化 #将内存的数据存到硬盘中,中间的格式,可以被多种语言识别,跨平台交互数据 #json 可以将字典之类的数据类型存到字典中 import json dic = {&quo ...
- NativeClient开发指南
https://blog.csdn.net/column/details/24458.html
- C++中几种测试程序运行时间的方法<转>
转的地址:https://www.cnblogs.com/silentteen/p/7532855.html 1.GetTickCount()函数 原理: GetTickCount()是获取系统启动后 ...
- cookie操作:设置cookie、读取cookie、删除cookie
一.设置cookie function setCookie(name, value){ Days = 1; var exp = new Date(); exp.setTime(exp.getTime( ...
- linux 常用命令记录&& xsheel 使用记录
cp -r x1 x2 复制文件x1到x2 ls 当前目录下的文件列表 ll ...
- 解决 'Could not convert variant of type (NULL) into type (String)
写存储过程中有不允许为空的字段,在客户端转化取数时显示 Could not convert variant of type (NULL) into type (String) 可以在存储过程中使用is ...
- Redis进阶实践之五Redis的高级特性(转载 5)
Redis进阶实践之五Redis的高级特性 一.引言 上一篇文章写了Redis的特征,使用场景,同时也介绍了Redis的基本数据类型,redis的数据类型是操作redis的基础,这个必须好好的掌握.今 ...
- Jsp基本语法 第二章
今天是星期天,我学习了关于Jsp的一些基本页面元素 首先学习了一些基本页面注释 1.HTML的注释 <!-- htmI注释-->// 客户端可见 2.JSP的注释: <%-- ...
- Android sdk 目录结构说明
1.add-on:附加的包:2.docs:HTML格式的离线文档:3.platforms:sdk核心内容:4.tool:工具. 在platforms中包含了的各个Android SDK版本的目录中,包 ...