Problem Description
You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa is an undeveloped country and it is threatened by the rising of sea level. Scientists predict that Nubulsa will disappear by the year of 2012. Nubulsa government wants to host the 2011 Expo in their country so that even in the future, all the people in the world will remember that there was a country named “Nubulsa”.
As you know, the Expo garden is made up of many museums of different countries. In the Expo garden, there are a lot of bi-directional roads connecting those museums, and all museums are directly or indirectly connected with others. Each road has a tourist capacity which means the maximum number of people who can pass the road per second.
Because Nubulsa is not a rich country and the ticket checking machine is very expensive, the government decides that there must be only one entrance and one exit. The president has already chosen a museum as the entrance of the whole Expo garden, and it’s the Expo chief directory Wuzula’s job to choose a museum as the exit.
Wuzula has been to the Shanghai Expo, and he was frightened by the tremendous “people mountain people sea” there. He wants to control the number of people in his Expo garden. So Wuzula wants to find a suitable museum as the exit so that the “max tourists flow” of the Expo garden is the minimum. If the “max tourist flow” is W, it means that when the Expo garden comes to “stable status”, the number of tourists who enter the entrance per second is at most W. When the Expo garden is in “stable status”, it means that the number of people in the Expo garden remains unchanged.
Because there are only some posters in every museum, so Wuzula assume that all tourists just keep walking and even when they come to a museum, they just walk through, never stay.

Input
There are several test cases, and the input ends with a line of “0 0 0”.

For each test case:
The first line contains three integers N, M and S, representing the number of the museums, the number of roads and the No. of the museum which is chosen as the entrance (all museums are numbered from 1 to N). For example, 5 5 1 means that there are 5 museums and 5 roads connecting them, and the No. 1 museum is the entrance.
The next M lines describe the roads. Each line contains three integers X, Y and K, representing the road connects museum X with museum Y directly and its tourist capacity is K.

Please note:
1<N<=300, 0<M<=50000, 0<S,X,Y<=N, 0<K<=1000000

Output
For each test case, print a line with only an integer W, representing the “max tourist flow” of the Expo garden if Wuzula makes the right choice.

Sample Input
5 5 1
1 2 5
2 4 6
1 3 7
3 4 3
5 1 10
0 0 0

Sample Output
8

题意

N个博物馆,M条路,S为入口,要求你找个出口T,使得从S-T的人流量总和最小,就是S-T的最大流最小,输出最大流

题解

由于最大流=最小割,根据全局最小割可知,两个集合a和b,无论S在哪个集合,都有另1个集合的点满足,所以S根本不用考虑

所以题目就变成求全局最小割

代码

 #include<bits/stdc++.h>
using namespace std; const int maxn=;
const int INF=0x3f3f3f3f; int G[maxn][maxn],wage[maxn],v[maxn];
bool vis[maxn],in[maxn];
int n,m; int Stoer_wagner()
{
int ans=INF;
for(int i=;i<=n;i++)v[i]=i;
while(n>)
{
memset(vis,,sizeof vis);
memset(wage,,sizeof wage);
int k,pre=;
vis[v[pre]]=true;
for(int i=;i<=n;i++)
{
k=-;
for(int j=;j<=n;j++)
if(!vis[v[j]])
{
wage[v[j]]+=G[v[pre]][v[j]];
if(k==-||wage[v[k]]<wage[v[j]])k=j;
}
vis[v[k]]=true;
if(i==n-)
{
ans=min(ans,wage[v[k]]);
if(ans==)return ans;
for(int j=;j<=n;j++)
{
G[v[pre]][v[j]]+=G[v[j]][v[k]];
G[v[j]][v[pre]]+=G[v[j]][v[k]];
}
v[k]=v[n--];
}
pre=k;
}
}
return ans;
}
int main()
{
while(scanf("%d%d%*d",&n,&m)!=EOF,n||m)
{
memset(G,,sizeof G);
for(int i=,u,v,w;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
G[u][v]+=w;
G[v][u]+=w;
}
printf("%d\n",Stoer_wagner());
}
return ;
}

HDU 3691 Nubulsa Expo(全局最小割)的更多相关文章

  1. UVALive 5099 Nubulsa Expo 全局最小割问题

    B - Nubulsa Expo Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit S ...

  2. HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)

    Problem Description You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa ...

  3. UVALive 5099 Nubulsa Expo 全球最小割 非网络流量 n^3

    主题链接:点击打开链接 意甲冠军: 给定n个点m条无向边 源点S 以下m行给出无向边以及边的容量. 问: 找一个汇点,使得图的最大流最小. 输出最小的流量. 思路: 最大流=最小割. 所以题意就是找全 ...

  4. HDU 3691 Nubulsa Expo

    无向图的最小割.套了个模板. #include<iostream> #include<cstdio> #include<cstring> #include<a ...

  5. 全局最小割StoerWagner算法详解

    前言 StoerWagner算法是一个找出无向图全局最小割的算法,本文需要读者有一定的图论基础. 本文大部分内容与词汇来自参考文献(英文,需***),用兴趣的可以去读一下文献. 概念 无向图的割:有无 ...

  6. UVALive 5099 Nubulsa Expo(全局最小割)

    题面 vjudge传送门 题解 论文题 见2016绍兴一中王文涛国家队候选队员论文<浅谈无向图最小割问题的一些算法及应用>4节 全局最小割 板题 CODE 暴力O(n3)O(n^3)O(n ...

  7. HDU 6081 度度熊的王国战略(全局最小割堆优化)

    Problem Description度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族.哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士.所以这一场战争,将会十分艰难.为了更好的进攻 ...

  8. HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)

    Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...

  9. ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)

    题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...

随机推荐

  1. call 和 apply

    call和apply作用一样,都是为了转移this,区别在于传入参数的方式不同. this指当前方法所在的对象,如果方法的外面没有对象,则默认是window.由于闭包虽在调用的方法中,但是在创建的时候 ...

  2. SRM-相关资料路径

    SRM采购管理平台功能介绍 https://wenku.baidu.com/view/b05cff5930b765ce0508763231126edb6f1a763c.html https://wen ...

  3. Python集合的基本操作

    #-*coding:utf-8 -* list =set([2,3,4]) list2 =set([5,3,7]) #交集 #print (list.intersection(list2)) #并集 ...

  4. Linux 完整卸载oracle和grid软件

    本文主要描述如何在Linux下完全卸载oracle和grid软件. 操作环境 SuSE11 oracle用户完整删除操作步骤 1.登录oracle用户,停止Oracle数据库监听和数据库实例 orac ...

  5. 编译Linux内核(Mac OS平台)

    操作系统第一次实验需要编译Linux内核,我之前在Mac上一直使用的都是Parallels Desktop这个软件,所以这次也将课程网站上提供的Ubuntu安装在了PD上,但是编译完内核后无法进入Ub ...

  6. C#格式化数值结果表(格式化字符串)

    字符 说明 示例 输出 C 货币 string.Format("{0:C3}", 2) $2.000 D 十进制 string.Format("{0:D3}", ...

  7. 关于jsp基本语法:第一章节

    今天我学习了关于JSP基本语法的一些知识点. JSP全名是 Java server pages,其根本是一个简化的Servlet设计,实现了在java当中使用HTML标签.JSP是一种动态网页技术,标 ...

  8. 学JS的心路历程-for of和for in

    我们在刚入门JS时候,说到要跑出数组的每个值肯定都是这样子: var arr = [1,2,3,4,5,6]: for(let i = 0:i < arr.length:i++){ consol ...

  9. 安装opencv3.x卡在ICV: Downloading ippicv_linux_20151201.tgz...

    参考:http://blog.csdn.net/bobsweetie/article/details/52502741 可以自己下载: ICV: Downloading ippicv_linux_20 ...

  10. Winform 对话框

    ColorDialog:显示可用颜色,以及用户可以自定义颜色的控件,以调色板对话框形式出现,可选择更改字体颜色 FolderBrowserDialog:显示一个对话框,提示用户选择文件夹 FontDi ...