题目链接:http://poj.org/problem?id=3735

解题思路:

  先构造一个(n+1)*(n+1)的单位矩阵E,在此基础上进行操作:

  1、g i     ------------->      E[0][i] ++;

  2、s i j   ------------->  for(int k=0;k<=n;k++)  swap(E[k][i],E[k][j]);

  3、e i    ------------->  for(int k=0;k<=n;k++) E[k][i]=0;

  上面的这一个部分本来我是构造多个单位矩阵,在单位矩阵上进行操作的,操作后的矩阵相乘的结果就是总的操作,结果就是一个TLE。。。后来改成这样才AC了。

  然后再构造一个矩阵A,A只有左上角为1,其他的都为0。操作m次,其实就是A*(E^m)。矩阵快速幂,上!

AC代码:

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=;
struct Matrix{
ll mat[maxn][maxn];
};
Matrix Multiply(Matrix x,Matrix y,int n){
Matrix temp;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
temp.mat[i][j]=;
for(int k=;k<=n;k++){
if(x.mat[i][k]&&y.mat[k][j]) //没有这个优化TLE
temp.mat[i][j]+=(x.mat[i][k]*y.mat[k][j]);
}
}
}
return temp;
}
Matrix Fast_Power(Matrix a,int m,int n){
Matrix res;
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
if(i==j) res.mat[i][j]=;
else res.mat[i][j]=res.mat[j][i]=;
}
}
while(m){
if(m&) res=Multiply(res,a,n);
m>>=;
a=Multiply(a,a,n);
}
return res;
} int main(){
Matrix rt;
int n,m,k,a,b;
char t[];
while(scanf("%d%d%d",&n,&m,&k)==&&(n||m||k)){
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
if(i==j) rt.mat[i][j]=;
else rt.mat[i][j]=rt.mat[j][i]=;
}
}//构造出一个(n+1)*(n+1)的单位矩阵
while(k--){
scanf("%s",t);
if(t[]=='g'){
scanf("%d",&a);
rt.mat[][a]++;
}
else if(t[]=='e'){
scanf("%d",&a);
for(int i=;i<=n;i++)
rt.mat[i][a]=;
}
else{
scanf("%d %d",&a,&b);
for(int i=;i<=n;i++){
if(rt.mat[i][a]||rt.mat[i][b])
swap(rt.mat[i][a],rt.mat[i][b]);
}
}
}
if(m==){
for(int i=;i<n;i++){
if(i!=) printf(" ");
printf("");
}
}
else{
Matrix t;
memset(t.mat,,sizeof(t));
t.mat[][]=;
Matrix ret=Multiply(t,Fast_Power(rt,m,n),n);
for(int i=;i<=n;i++){
if(i!=) printf(" ");
printf("%lld",ret.mat[][i]);
}
}
printf("\n");
}
return ;
}

POJ3735的更多相关文章

  1. [poj3735] Training little cats_矩乘快速幂

    Training little cats poj-3735 题目大意:给你n个数,k个操作,将所有操作重复m次. 注释:三种操作,将第i个盒子+1,交换两个盒子中的个数,将一个盒子清空.$1\le m ...

  2. POJ3735 矩阵

    题意:有n只猫咪,开始时每只猫咪有花生0颗,现有一组操作,由下面三个中的k个操作组成:        1. g i 给i只猫咪一颗花生米        2. e i 让第i只猫咪吃掉它拥有的所有花生米 ...

  3. Training little cats poj3735

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9299   Accepted: 2 ...

  4. xiaowuga poj3735—Training little cats(特殊操作转化为矩阵操作)

    题意:有n只猫,对其进行k次操作,然后反复这样操作m次. 其中g 表示 i 猫加1, e表示 i 猫为0:s表示  i 与 j 猫互换. 解释一下样例: 3 1 6g 1g 2g 2s 1 2g 3e ...

  5. Training little cats(poj3735,矩阵快速幂)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10737   Accepted:  ...

  6. poj3735—Training little cats(特殊操作转化为矩阵操作)

    题目链接:http://poj.org/problem?id=3735 题目意思: 调教猫咪:有n只饥渴的猫咪,现有一组羞耻连续操作,由k个操作组成,全部选自: 1. g i 给第i只猫咪一颗花生 2 ...

  7. POJ3735【矩阵快速幂】

    逛了一圈...觉得这篇讲的比较清楚:传送门~ 简要概括: 1.线性代数的知识,单位矩阵的利用:(如果不知道单位矩阵的,先去补习一下线代,做几题行列式就会了): 2.然后构造好矩阵以后,直接做M次乘积运 ...

  8. [POJ3735]Training little cats

    题目:Training little cats 链接:http://poj.org/problem?id=3735 分析: 1)将操作用矩阵表示出来,然后快速幂优化. 2)初始矩阵:$ \left[ ...

  9. ACM之路(18)—— 矩阵

    矩阵是干什么的呢?一句话来说就是,知道相邻两个函数的递推关系和第一个数,让你递推到第n个数.显然,如果n很大,那么一个一个递推过去是会超时的.所以矩阵就是用来解决这种快速递推的问题的. 比方说斐波那契 ...

随机推荐

  1. linux系统的简单配置

    配置网卡:vim /etc/sysconfig/network-scripts/网卡名称 ifcfg-xxxx  ##文件名称 DEVICE=xxx  ##设备名称 BOOTPROTO=dhcp|st ...

  2. MySQL分页查询的性能优化

    MySQL limit分页查询的性能优化 Mysql的分页查询十分简单,但是当数据量大的时候一般的分页就吃不消了. 传统分页查询:SELECT c1,c2,cn… FROM table LIMIT n ...

  3. vue父组件向子组件传对象,不实时更新解决

    vue报错:void mutating a prop directly since the value will be overwritten whenever the parent componen ...

  4. Codeforces 1291 Round #616 (Div. 2) C. Mind Control(超级详细)

    C. Mind Control You and your n−1 friends have found an array of integers a1,a2,-,an. You have decide ...

  5. ACM-ICPC 2019 山东省省赛总结

    五题手快拿银,不然拿铜,甚至不拿,从结果上来看拿了铜牌对第一年的我们来说算好的,也不算太好. 从拿奖后的第一天,我想写这篇博客,但是我忍了下来,那时候被喜悦冲昏了头脑,当 冷静下来,我开始打算写这篇博 ...

  6. 一只简单的网络爬虫(基于linux C/C++)————开篇

    最近学习开发linux下的爬虫,主要是参考了该博客及其他一些网上的资料.网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息 ...

  7. 推荐一款Python数据可视化神器

    1. 前言 在日常工作中,为了更直观的发现数据中隐藏的规律,察觉到变量之间的互动关系,人们常常借助可视化帮助我们更好的给他人解释现象,做到一图胜千文的说明效果. 在Python中,常见的数据可视化库有 ...

  8. spring中bean的常用属性

    一.scop scope用来配置bean对象是否是单例模式.单例模式是java的二十三种设置模式之一,指在这个项目运行过程中一 个类的对象只会实例化一次.一般,工厂类的对象都是单例模式.非单例模式叫多 ...

  9. java基础篇 之 异常丢失

    我们看如下代码: @Slf4j public class Test { public static void main(String[] args) { try { try { test(); } f ...

  10. leetcode_雇佣 K 名工人的最低成本(优先级队列,堆排序)

    题干: 有 N 名工人. 第 i 名工人的工作质量为 quality[i] ,其最低期望工资为 wage[i] . 现在我们想雇佣 K 名工人组成一个工资组.在雇佣 一组 K 名工人时,我们必须按照下 ...