题目链接:http://poj.org/problem?id=3735

解题思路:

  先构造一个(n+1)*(n+1)的单位矩阵E,在此基础上进行操作:

  1、g i     ------------->      E[0][i] ++;

  2、s i j   ------------->  for(int k=0;k<=n;k++)  swap(E[k][i],E[k][j]);

  3、e i    ------------->  for(int k=0;k<=n;k++) E[k][i]=0;

  上面的这一个部分本来我是构造多个单位矩阵,在单位矩阵上进行操作的,操作后的矩阵相乘的结果就是总的操作,结果就是一个TLE。。。后来改成这样才AC了。

  然后再构造一个矩阵A,A只有左上角为1,其他的都为0。操作m次,其实就是A*(E^m)。矩阵快速幂,上!

AC代码:

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=;
struct Matrix{
ll mat[maxn][maxn];
};
Matrix Multiply(Matrix x,Matrix y,int n){
Matrix temp;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
temp.mat[i][j]=;
for(int k=;k<=n;k++){
if(x.mat[i][k]&&y.mat[k][j]) //没有这个优化TLE
temp.mat[i][j]+=(x.mat[i][k]*y.mat[k][j]);
}
}
}
return temp;
}
Matrix Fast_Power(Matrix a,int m,int n){
Matrix res;
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
if(i==j) res.mat[i][j]=;
else res.mat[i][j]=res.mat[j][i]=;
}
}
while(m){
if(m&) res=Multiply(res,a,n);
m>>=;
a=Multiply(a,a,n);
}
return res;
} int main(){
Matrix rt;
int n,m,k,a,b;
char t[];
while(scanf("%d%d%d",&n,&m,&k)==&&(n||m||k)){
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
if(i==j) rt.mat[i][j]=;
else rt.mat[i][j]=rt.mat[j][i]=;
}
}//构造出一个(n+1)*(n+1)的单位矩阵
while(k--){
scanf("%s",t);
if(t[]=='g'){
scanf("%d",&a);
rt.mat[][a]++;
}
else if(t[]=='e'){
scanf("%d",&a);
for(int i=;i<=n;i++)
rt.mat[i][a]=;
}
else{
scanf("%d %d",&a,&b);
for(int i=;i<=n;i++){
if(rt.mat[i][a]||rt.mat[i][b])
swap(rt.mat[i][a],rt.mat[i][b]);
}
}
}
if(m==){
for(int i=;i<n;i++){
if(i!=) printf(" ");
printf("");
}
}
else{
Matrix t;
memset(t.mat,,sizeof(t));
t.mat[][]=;
Matrix ret=Multiply(t,Fast_Power(rt,m,n),n);
for(int i=;i<=n;i++){
if(i!=) printf(" ");
printf("%lld",ret.mat[][i]);
}
}
printf("\n");
}
return ;
}

POJ3735的更多相关文章

  1. [poj3735] Training little cats_矩乘快速幂

    Training little cats poj-3735 题目大意:给你n个数,k个操作,将所有操作重复m次. 注释:三种操作,将第i个盒子+1,交换两个盒子中的个数,将一个盒子清空.$1\le m ...

  2. POJ3735 矩阵

    题意:有n只猫咪,开始时每只猫咪有花生0颗,现有一组操作,由下面三个中的k个操作组成:        1. g i 给i只猫咪一颗花生米        2. e i 让第i只猫咪吃掉它拥有的所有花生米 ...

  3. Training little cats poj3735

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9299   Accepted: 2 ...

  4. xiaowuga poj3735—Training little cats(特殊操作转化为矩阵操作)

    题意:有n只猫,对其进行k次操作,然后反复这样操作m次. 其中g 表示 i 猫加1, e表示 i 猫为0:s表示  i 与 j 猫互换. 解释一下样例: 3 1 6g 1g 2g 2s 1 2g 3e ...

  5. Training little cats(poj3735,矩阵快速幂)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10737   Accepted:  ...

  6. poj3735—Training little cats(特殊操作转化为矩阵操作)

    题目链接:http://poj.org/problem?id=3735 题目意思: 调教猫咪:有n只饥渴的猫咪,现有一组羞耻连续操作,由k个操作组成,全部选自: 1. g i 给第i只猫咪一颗花生 2 ...

  7. POJ3735【矩阵快速幂】

    逛了一圈...觉得这篇讲的比较清楚:传送门~ 简要概括: 1.线性代数的知识,单位矩阵的利用:(如果不知道单位矩阵的,先去补习一下线代,做几题行列式就会了): 2.然后构造好矩阵以后,直接做M次乘积运 ...

  8. [POJ3735]Training little cats

    题目:Training little cats 链接:http://poj.org/problem?id=3735 分析: 1)将操作用矩阵表示出来,然后快速幂优化. 2)初始矩阵:$ \left[ ...

  9. ACM之路(18)—— 矩阵

    矩阵是干什么的呢?一句话来说就是,知道相邻两个函数的递推关系和第一个数,让你递推到第n个数.显然,如果n很大,那么一个一个递推过去是会超时的.所以矩阵就是用来解决这种快速递推的问题的. 比方说斐波那契 ...

随机推荐

  1. Spring5参考指南:Environment

    文章目录 Profiles PropertySource 使用@PropertySource Spring的Environment接口有两个关键的作用:1. Profile, 2.properties ...

  2. Scala教程之:Either

    在之前的文章中我们提到了Option,scala中Option表示存在0或者1个元素,如果在处理异常的时候Option就会有很大的限制,因为Option如果返回None,那么我并不知道具体的异常到底是 ...

  3. Kubernetes-在Kubernetes集群上搭建HBase集群

    经过3天的努力,终于在Kubernetes上把HBase集群搭建起来了,搭建步骤如下. 创建HBase镜像   配置文件包含core-site.xml.hbase-site.xml.hdfs-site ...

  4. nodeJS中express框架设置全局跨域请求头

    //设置跨域请求头 router.all('*', function(req, res, next) { res.header("Access-Control-Allow-Origin&qu ...

  5. P1465 序言页码 Preface Numbering (手推)

    题目描述 一类书的序言是以罗马数字标页码的.传统罗马数字用单个字母表示特定的数值,以下是标准数字表: I 1 V 5 X 10 L 50 C 100 D 500 M 1000 最多3个同样的可以表示为 ...

  6. 图论--Floyd总结

    Key word:     ①最短路     ②传递闭包:大小关系 数值关系 先后关系 联通关系     ③floyd变形     ④实现方式:插点发法     ⑤思想:动态规划 1.最短路: 最短路 ...

  7. CF1316C Primitive Primes

    CF1316C [Primitive Primes] 给出两个多项式\(a_0+a_1x+a_2x^2+\dots +a_{n-1}x^{n-1}\)和\(b_0+b_1x+b_2x^2+ \dots ...

  8. muduo网络库源码学习————Exception类

    Exception类是为异常捕获而设计,可以获得异常的信息以及栈的回溯信息 (原来的代码没有demangle成员函数,输出的格式比较难看,加了demangle成员函数,利用demangle成员函数可以 ...

  9. python——append后的列表为什么打印出来为空

    关于python 列表append的用法: list = [] list = list.append("c") print(list) >>>None 正确写法应 ...

  10. 配置中心Apollo搭建全过程

    总体架构 用户在Portal操作配置发布 Portal调用Admin Service的接口操作发布 Admin Service发布配置后,发送ReleaseMessage给各个Config Servi ...