Codeforces123E. Maze【树形dp】【概率dp】【证明题】
题目大意
一棵树,上面的每个点都有一定概率成为起点和终点
从起点出发,随机游走,并按照下列规则统计count:
DFS(x)
if x == exit vertex then
finish search
flag[x] <- TRUE
random shuffle the vertices' order in V(x) // here all permutations have equal probability to be chosen
for i <- 1 to length[V] do
if flag[V[i]] = FALSE then
count++;
DFS(y);
count++;
求count的期望
思路
首先来证明一个东西:
对于每个节点u,如果这个节点是终点,那么他的贡献是
\]
\(sump_v\)是子树内每个节点作为起始节点的概率和
首先我们把一个以u为根子树拿出来,对于其中的每一个点v
如果起始节点s在v的子树内,v一定会被经过1次,贡献\(p_s\)
如果s不在v的子树内,v有\(\frac{1}{2}\)的概率会被经过,贡献\(p_s*2*\frac{1}{2}=p_s\)
不被经过的贡献是\(0\)
然后来证为为什么有\(\frac{1}{2}\)的概率被经过
从s开始进入每个子树,要么遍历完,要么停下来
所以可以认为任何一个子树在停下来之前被访问的概率都是\(\frac{1}{2}\)
然后这题做完了。。。泪奔ing
#include<bits/stdc++.h>
using namespace std;
typedef double db;
const int N = 1e5 + 10;
int n, siz[N];
vector<int> g[N];
db p[N], q[N], sump = 0, sumq = 0, ans;
void dfs(int u, int fa) {
siz[u] = 1;
for (auto v : g[u]) {
if (v == fa) continue;
dfs(v, u);
siz[u] += siz[v];
p[u] += p[v];
ans += q[u] * siz[v] * p[v];
}
ans += q[u] * (n - siz[u]) * (sump - p[u]);
}
int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
int u, v;
scanf("%d %d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
for (int i = 1; i <= n; i++) {
scanf("%lf %lf", &p[i], &q[i]);
sump += p[i], sumq += q[i];
}
dfs(1, 0);
printf("%.15lf", ans / (sump * sumq));
return 0;
}
Codeforces123E. Maze【树形dp】【概率dp】【证明题】的更多相关文章
- SGU 495 Kids and Prizes:期望dp / 概率dp / 推公式
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=495 题意: 有n个礼物盒,m个人. 最开始每个礼物盒中都有一个礼物. m个人依次随 ...
- BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
- [LOJ3124][CTS2019|CTSC2019]氪金手游:树形DP+概率DP+容斥原理
分析 首先容易得出这样一个事实,在若干物品中最先被选出的是编号为\(i\)的物品的概率为\(\frac{W_i}{\sum_{j=1}^{cnt}W_j}\). 假设树是一棵外向树,即父亲比儿子先选( ...
- 初涉期望dp/概率dp【在更】
大致可以分为两种:爆精度:小数取模.
- bzoj 1076: [SCOI2008]奖励关【状压dp+概率dp】
设f[i][s]为前i步,选的礼物集合为s的方案数,然而并不会转移-- 看了hzwer的blog,发现要倒着转移,然后答案就是f[1][0] 妙啊 #include<iostream> # ...
- [NOIP2016 D1T3]换教室 【floyd+概率dp】
题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq i \leq n1≤ ...
- 13年山东省赛 The number of steps(概率dp水题)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud The number of steps Time Limit: 1 Sec Me ...
- 【BZOJ 2878】 2878: [Noi2012]迷失游乐园 (环套树、树形概率DP)
2878: [Noi2012]迷失游乐园 Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m ...
- A Dangerous Maze (II) LightOJ - 1395(概率dp)
A Dangerous Maze (II) LightOJ - 1395(概率dp) 这题是Light Oj 1027的加强版,1027那道是无记忆的. 题意: 有n扇门,每次你可以选择其中一扇.xi ...
随机推荐
- Maven置标签<scope>
在POM 4中,<dependency>中引入了<scope>,它主要管理依赖的部署.目前<scope>可以使用5个值: * compile,缺省值,适用于所有阶段 ...
- scala 与 java 之间的关系
scala来源于java,但又高于java. scala的设计者Martin Odersky就是一个JAVA控,这位牛人设计了javac和编写了jdk中的通用代码.可以说java语言本身就是Marti ...
- Vue组件(知识)
form最后一节. 组件基础 组件的复用: data必须是函数 组织 通过Prop向子组件传递data 单个根元素 通过event向父组件发送消息: 使用事件抛出一个value, 在组件上用v-mo ...
- AsyncTask用法和异步加载图片
AsyncTask:是Android提供的轻量级的异步类,可以直接继承AsyncTask,在类中实现异步操作,并提供接口反馈当前异步执行的程度(可以通过接口实现UI进度更新),最后反馈执行的结果给UI ...
- 50 Jquery 库
一.概念: 1.jquery 的选择器和ccs 相同 2.jquery对象, dom对象的集合,类似python中list,有自己的各种方法和属性 // [dom1,dom2,.....] 3.方便之 ...
- SQL2005 安装问题
1. 单击“开始”,依次指向“程序”.“Microsoft SQL Server 2005”和“配置工具”,然后单击“SQL Server 外围应用配置器”. 2. 在“SQL Server 2005 ...
- XML文档的创建
右键项目,添加,新建项,XML文件 XML文件的第一行有一个标题,标题描述了这个XML文件的版本和编码 XML文件必须有根节点且只能有一个根节点,如<Books></Books> ...
- EBS R12 MOAC原理探索 (转)
转载地址 EBS R12 MOAC原理探索
- Spring Data Rest如何暴露ID字段
package com.example.demo.config; import com.example.demo.model.Comp; import com.example.demo.model.P ...
- mahout推荐系统
本章包含以下内容: 首先看一下实战中的推荐系统 推荐引擎的精度评价 评价一个引擎的准确率和召回率 在真实数据集:GroupLens 上评价推荐系统 我们每天都会对喜欢的.不喜欢的.甚至不关心的事情有很 ...