https://www.lydsy.com/JudgeOnline/problem.php?id=2425

https://www.luogu.org/problemnew/show/P2518

你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数。比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等。

现在给定一个数,问在这个数之前有多少个数。(注意这个数不会有前导0).

题意看了半天终于看懂了。

我们从高位到低位枚举比当前位小的数,然后对于剩下的元素放在后面全排列即可。

可重元素全排列=元素个数!/每个元素个数!的乘积。

防止爆ll可以将分子分母分解后约分再计算。

(貌似本质上是一道很暴力有点思维的水题,不是数位dp)

#include<cstdio>
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
char s[N];
int n,sum,t[],p[N];
ll ans=;
int main(){
cin>>s+;
n=strlen(s+);
for(int i=;i<=n;i++)t[s[i]-'']++,sum++;
for(int i=;i<=n;i++){
for(int j=;j<s[i]-'';j++){
if(t[j]){
memset(p,,sizeof(p));
t[j]--;sum--;
for(int k=;k<=;k++)
for(int l=;l<=t[k];l++)
p[l]++;
ll tmp=;
for(int k=;k<=sum;k++){
tmp*=k;
for(int l=;l<N;l++){
while(p[l]&&tmp%l==){
p[l]--;tmp/=l;
}
}
}
ans+=tmp;
t[j]++;sum++;
}
}
t[s[i]-'']--,sum--;
}
printf("%lld\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ2425:[HAOI2010]计数——题解的更多相关文章

  1. BZOJ2425: [HAOI2010]计数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2425 其实能够构成的数就是原数的排列(算前导0),然后组合计数一下就可以了. #include ...

  2. BZOJ2425 [HAOI2010]计数 【数位dp】

    题目 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等. 现 ...

  3. bzoj千题计划178:bzoj2425: [HAOI2010]计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=2425 题意转化: 给定一个集合S,求S的全排列<给定排列 的排列个数 从最高位开始逐位枚举确定 ...

  4. BZOJ2425:[HAOI2010]计数(数位DP)

    Description 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1 ...

  5. 【BZOJ2425】[HAOI2010]计数(组合数学)

    [BZOJ2425][HAOI2010]计数(组合数学) 题面 BZOJ 洛谷 题解 很容易的一道题目. 统计一下每个数位出现的次数,然后从前往后依次枚举每一位,表示前面都已经卡在了范围内,从这一位开 ...

  6. bzoj 2425 [HAOI2010]计数 dp+组合计数

    [HAOI2010]计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 451  Solved: 289[Submit][Status][Discus ...

  7. 洛谷P4071-[SDOI2016]排列计数 题解

    SDOI2016-排列计数 发现很多题解都没有讲清楚这道题为什么要用逆元.递推公式怎么来的. 我,风雨兼程三十载,只为写出一篇好题解. 还是我来造福大家一下吧. 题目大意: 一个长度为 n 且 1~n ...

  8. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...

  9. [HAOI2010]计数(组合数学)(数位DP)

    原题题意也就是给的数的全排列小于原数的个数. 我们可以很容易的想到重复元素的排列个数的公式. 但是我们发现阶乘的话很快就会爆long long啊(如果您想写高精请便) 之后我就尝试质因数分解....但 ...

随机推荐

  1. 说说NSCache优于NSDictionary的几点

    1.NSCache可以提供自动删减缓存功能,而且保证线程安全,与字典不同,不会拷贝键.2.NSCache可以设置缓存上限,限制对象个数和总缓存开销.定义了删除缓存对象的时机.这个机制只对NSCache ...

  2. Qt-网络与通信-获取本机网络信息

    在网络应用中,经常需要获取本机主机名和IP地址和硬件地址等信息.运用QHostInfo.QNetworkInterface.QNetworkAddressEntry可以获得本机的网络信息. 上运行截图 ...

  3. Qt-第一个QML程序-1-项目工程的建立

    这个小程序是我发的第一个完整的QMl程序,这个程序也会持续的更新,一步一步的完善起来,最后会有一个什么样的结果也是不知道,只是把自己目前掌握的QML相关的东西都慢慢的写进来,积累起来 先展示一下运行结 ...

  4. 第六模块:WEB框架开发 第1章·Django框架开发88~128

    88-Ajax简介 89-Ajax的简单实现 90-基于Ajax的传递数据 91-基于Ajax的登录验证 92-基于Form表单的文件上传 93-请求头之contentType 94-Ajax传递js ...

  5. mvc中actionresult的返回值类型

    以前一直没注意actionresult都能返回哪些类型的类型值(一直用的公司的内部工具类初始化进行返回的),今天跟大家分享一下(也是转载的别人的日志qaq). 首先我们了解一下对action的要求: ...

  6. [C++] Class (part 1)

    The fundamental ideas behind classes are data abstraction and encapsulation. Data abstraction is a p ...

  7. Linux下安装paramiko

    paramiko是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接. 由于使用的是python这样的能够跨平台运行的语言,所以所有python支持的平台, ...

  8. Python中的__future__

    在Python中,你如果在某一个版本的Python想使用未来版本中的功能,可以使用如下语法实现: from __future__ import futurename 这条语句必须放在module文件的 ...

  9. 软件工程 作业part1 自我介绍

    自我介绍 老师您好,我叫宋雨,本科在长春理工大学,专业是计算机科学与技术. 1.回想一下你曾经对计算机专业的畅想:当初你是如何做出选择计算机专业的决定?你认为过去接触的课程是否符合你对计算机专业的期待 ...

  10. Thunder团队第五周 - Scrum会议7

    Scrum会议7 小组名称:Thunder 项目名称:i阅app Scrum Master:苗威 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传康 ...