02(e)多元无约束优化问题- 梯度的两种求解方法以及有约束转化为无约束问题
2.1 求解梯度的两种方法
以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到:
$\nabla f=\left[ \begin{aligned}& \frac{\partial f}{\partial x} \\& \frac{\partial f}{\partial y} \\\end{aligned} \right]=\left[ \begin{aligned}& 2x \\& 3{{y}^{2}} \\\end{aligned} \right]$
这样就很容易求得某一点的梯度。
但是如果梯度的表达式很难写出来,或者根本就写不出来的时候,尤其定义去求梯度可是可以的:
$\nabla f=\left[ \begin{aligned}& \frac{\partial f}{\partial x} \\& \frac{\partial f}{\partial y} \\\end{aligned} \right]=\left[ \begin{aligned}& \frac{f(x+\Delta x,y)-f(x,y)}{\Delta x} \\& \frac{f(x,y+\Delta y)-f(x,y)}{\Delta y} \\\end{aligned} \right]$
在实际算的过程中这里的$\Delta x$,$\Delta y$也不用取太小一般$1\times {{10}^{-7}}$左右就可以了。
2.2 某些有约束优化问题可以转化为无约束优化问题:
\[\begin{aligned}& \operatorname{minimize}\text{ }f({{x}_{1}},{{x}_{2}})\text{ }\operatorname{minimize}\text{ }f({{x}_{1}},{{x}_{2}}) \\& \text{ }{{x}_{1}}>0\text{ }\Rightarrow \text{ }{{x}_{1}}={{{\hat{x}}}^{2}}_{1} \\& \text{ }{{x}_{2}}\le -30\text{ }-\text{30}-{{x}_{2}}\text{=}{{{\hat{x}}}^{2}}_{2}\text{ }\Rightarrow -\text{30}-{{{\hat{x}}}^{2}}_{2}\text{=}{{x}_{2}} \\\end{aligned}\]
把上式中左边的不等式优化,转化为右边的等式优化,再把等式代入目标函数中,形成了式(24)这样的无约束优化问题:
\[\operatorname{minimize}\text{ }f({{\hat{x}}_{1}},{{\hat{x}}_{2}})\]
通过优化求解得到满足上式的次优解$\left( {{{{\hat{x}}'}}_{1}},{{{{\hat{x}}'}}_{2}} \right)$,则原优化问题的解可以写为:
\[\begin{aligned}& \text{ }{{x}_{1}}={{\left( {{{{\hat{x}}'}}_{\text{1}}} \right)}^{\text{2}}} \\& {{x}_{2}}\text{=}-\text{30}-{{\left( {{{{\hat{x}}'}}_{2}} \right)}^{\text{2}}} \\\end{aligned}\]
这样的做法会增加目标函数的非线性度,但是很好的把有约束问题转变为无约束问题。下面这个带约束的优化问题同样可以用上述方式处理:
\[\begin{aligned}& \operatorname{minimize}\text{ }f({{x}_{1}},{{x}_{2}})\text{ }\operatorname{minimize}\text{ }f({{x}_{1}},{{x}_{2}}) \\ & \text{ 3}\le {{x}_{1}}\le 12\text{ }\Rightarrow \text{ } \\\end{aligned}\]
这里的转化,我想着用Sigmoid函数(logistic函数):
$f\left( x \right)=\frac{1}{1+{{e}^{-x}}}$
它的图像如下:

这样就可以用下面这个式子代替上述对${{x}_{1}}$的约束:
${{x}_{1}}=\frac{9}{1+{{e}^{-\hat{x}}}}+3$
它的图像如下

02(e)多元无约束优化问题- 梯度的两种求解方法以及有约束转化为无约束问题的更多相关文章
- ChemDraw Pro绘制无环链结构的两种方法
ChemDraw Pro 14是一款专门针对化学图形绘制而开发制作的编辑软件,是目前工科类常用的绘制化学结构工具,用于快速绘制常用的环结构组成.以下教程讲解ChemDraw Pro绘制无环链结构的两种 ...
- 02(b)多元无约束优化问题-最速下降法
此部分内容接02(a)多元无约束优化问题的内容! 第一类:最速下降法(Steepest descent method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta }) ...
- 02(c)多元无约束优化问题-牛顿法
此部分内容接<02(a)多元无约束优化问题>! 第二类:牛顿法(Newton method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ ...
- 02(a)多元无约束优化问题
2.1 基本优化问题 $\operatorname{minimize}\text{ }f(x)\text{ for }x\in {{R}^{n}}$ 解决无约束优化问题的一般步骤 ...
- 02(d)多元无约束优化问题-拟牛顿法
此部分内容接<02(a)多元无约束优化问题-牛顿法>!!! 第三类:拟牛顿法(Quasi-Newton methods) 拟牛顿法的下降方向写为: ${{\mathbf{d}}_{k}}= ...
- 无约束优化方法(梯度法-牛顿法-BFGS- L-BFGS)
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法.BFGS 与 L-BFGS 算法. 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较 ...
- 01(b)无约束优化(准备知识)
1.解方程转化为优化问题 $n\left\{ \begin{aligned}& {{P}_{1}}(x)=0 \\ & {{P}_{2}}(x)=0 \\ & \text{ ...
- 无约束优化算法——牛顿法与拟牛顿法(DFP,BFGS,LBFGS)
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的 ...
- MATLAB进行无约束优化
首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f=2exp(-x)sin(x)在(0,8)上的最大.最小值. 例2 边长3m的正方形铁板,四角减去相 ...
随机推荐
- WPF编游戏系列 之七 动画效果(2)
原文:WPF编游戏系列 之七 动画效果(2) 上一篇已经对关闭窗口图标进行了动画效果处理,本篇将对窗口界面的显示和关闭效果进行处理.由于所有的动画效果都是针对窗口界面的Canvas,所以 ...
- .Net 开源服务 and Net站点
小泥鳅博客系统也是一个.NET平台的开源免费博客系统,创建于2008年夏天,基于.Net平台开发,拥有完整的文章发布,评论,订阅,标签等功能,满足个人/团队信息发布需求,可作为Blog,CMS,甚至建 ...
- C# 获得设备usb信息
原文:C# 获得设备usb信息 本文告诉大家如何获得设备的usb来进行判断是否有哪些usb和找不到usb可能是什么. 需要在项目右击引用,点击程序集,搜索 System.Management 然后安装 ...
- miniui处理多重子表级联,一次性提交多表数据的ui要点
在一个ui界面上 有a,b,c三个表 a表只有一条记录,b表有多条记录,c表有多条记录 b是a的子表,c是b的子表 都是一对多关系 一次性下载相关联的c表记录 然后mini-datagrid采用cli ...
- SQL Server 2016新特性:DROP IF EXISTS
原文:SQL Server 2016新特性:DROP IF EXISTS 在我们写T-SQL要删除某个对象(表.存储过程等)时,一般会习惯先用IF语句判断该对象是否存在,然后DROP,比如: 旧 ...
- Win10的UWP之标题栏的返回键(二)
原文:Win10的UWP之标题栏的返回键(二) 关于Win10的UWP的返回键的第二种处理的方法,是介于标题栏的强行修改,不是像上期的那样直接调用系统内置的API. - - - - - - - - - ...
- JS获取a标签的Href 内容
<script type="text/javascript">function getHref(obj){ alert(obj.href);} </script& ...
- ASP.NET MVC视图
前言 视图即是用户与Web应用程序的接口,用户通常会看到视图,然后在视图上进行交互,Web应用程序的视图通常是HTML格式. 首先了解控制器选择返回哪个视图的问题.新建一个项目,浏览到/Home/Ab ...
- ML:单变量线性回归(Linear Regression With One Variable)
模型表达(model regression) 用于描述回归问题的标记 m 训练集(training set)中实例的数量 x 特征/输入变量 y 目标变量/输出变量 (x,y) 训练集中的实例 (x( ...
- 【转】简单的jQuery插件开发方法
在实际开发工作中,总会碰到像滚动,分页,日历等展示效果的业务需求,对于接触过jQuery以及熟悉jQuery使用的人来说,首先想到的肯定是寻找现有的jQuery插件来满足相应的展示需求.目前页面中常用 ...